Dynamics of entanglement in a dissipative Bose-Hubbard dimer

被引:17
作者
Pudlik, Tadeusz [1 ]
Hennig, Holger [2 ]
Witthaut, D. [3 ]
Campbell, David K. [1 ]
机构
[1] Boston Univ, Dept Phys, Boston, MA 02215 USA
[2] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[3] Max Planck Inst Dynam & Self Org MPIDS, D-37077 Gottingen, Germany
来源
PHYSICAL REVIEW A | 2013年 / 88卷 / 06期
基金
美国国家科学基金会;
关键词
BODY APPROXIMATION METHODS; SOLVABLE MODEL; DOUBLE-WELL; QUANTUM; ATOM; INTERFEROMETRY; VALIDITY; SIMULATIONS; GASES;
D O I
10.1103/PhysRevA.88.063606
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the connection between the semiclassical phase space of the Bose-Hubbard dimer and inherently quantum phenomena in this model, such as entanglement and dissipation-induced coherence. Near the semiclassical self-trapping fixed points, the dynamics of Einstein-Podolski-Rosen (EPR) entanglement and condensate fraction consists of beats among just three eigenstates. Since persistent EPR entangled states arise only in the neighborhood of these fixed points, our analysis explains essentially all of the entanglement dynamics in the system. We derive accurate analytical approximations by expanding about the strong-coupling limit; surprisingly, their realm of validity is nearly the entire parameter space for which the self-trapping fixed points exist. Finally, we show significant enhancement of entanglement can be produced by applying localized dissipation.
引用
收藏
页数:11
相关论文
共 61 条
[1]   Nonlinear excitations in arrays of Bose-Einstein condensates [J].
Abdullaev, FK ;
Baizakov, BB ;
Darmanyan, SA ;
Konotop, VV ;
Salerno, M .
PHYSICAL REVIEW A, 2001, 64 (04) :436061-4360610
[2]   Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction -: art. no. 010402 [J].
Albiez, M ;
Gati, R ;
Fölling, J ;
Hunsmann, S ;
Cristiani, M ;
Oberthaler, MK .
PHYSICAL REVIEW LETTERS, 2005, 95 (01)
[3]  
Aliferis P, 2006, QUANTUM INF COMPUT, V6, P97
[4]   A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice [J].
Bakr, Waseem S. ;
Gillen, Jonathon I. ;
Peng, Amy ;
Foelling, Simon ;
Greiner, Markus .
NATURE, 2009, 462 (7269) :74-U80
[5]   THE QUANTUM-THEORY OF LOCAL MODES IN A COUPLED SYSTEM OF NONLINEAR OSCILLATORS [J].
BERNSTEIN, L ;
EILBECK, JC ;
SCOTT, AC .
NONLINEARITY, 1990, 3 (02) :293-323
[6]   Ultracold quantum gases in optical lattices [J].
Bloch, I .
NATURE PHYSICS, 2005, 1 (01) :23-30
[7]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[8]  
Bloch I, 2012, NAT PHYS, V8, P267, DOI [10.1038/nphys2259, 10.1038/NPHYS2259]
[9]  
Breuer H.-P., 2007, The Theory of Open Quantum Systems
[10]   Atom interferometry based on light pulses: Application to the high precision measurement of the ratio h/m and the determination of the fine structure constant [J].
Cadoret, M. ;
De Mirandes, E. ;
Clade, P. ;
Nez, F. ;
Julien, L. ;
Biraben, F. ;
Guellati-Khelifa, S. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2009, 172 :121-136