Stability and holomorphic connections on vector bundles over LVMB manifolds

被引:1
作者
Biswas, Indranil [1 ]
Dumitrescu, Sorin [2 ]
Meersseman, Laurent [3 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Homi Bhabha Rd, Mumbai 400005, Maharashtra, India
[2] Univ Cote dAzur, CNRS, LJAD, Nice, France
[3] Univ Angers, Lab Angevin Rech Math, Univ Bretagne Loire, F-49045 Angers, France
关键词
COMPACT COMPLEX-MANIFOLDS;
D O I
10.5802/crmath.24
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize all LVMB manifolds X such that the holomorphic tangent bundle TX is spanned at the generic point by a family of global holomorphic vector fields, each of them having non-empty zero locus. We deduce that holomorphic connections on semi-stable holomorphic vector bundles over LVMB manifolds with this previous property are always flat.
引用
收藏
页码:151 / 157
页数:7
相关论文
共 14 条
[1]  
ATIYAH MF, 1957, T AM MATH SOC, V85, P181
[2]  
Biswas I., 2019, EUR J MATH, P40879
[3]   Compact complex manifolds: an extension of Meersseman's and Lopez de Medrano-Verjovsky's construction [J].
Bosio, F .
ANNALES DE L INSTITUT FOURIER, 2001, 51 (05) :1259-+
[4]   Real quadrics in Cn, complex manifolds and convex polytopes [J].
Bosio, Frederic ;
Meersseman, Laurent .
ACTA MATHEMATICA, 2006, 197 (01) :53-127
[5]  
BRINZANESCU V, 1996, LECT NOTES MATH, V1624
[6]   HERMITIAN-EINSTEIN CONNECTIONS AND STABLE VECTOR-BUNDLES OVER COMPACT COMPLEX-SURFACES [J].
BUCHDAHL, NP .
MATHEMATISCHE ANNALEN, 1988, 280 (04) :625-648
[7]   THE 1-FORM OF TORSION OF A COMPACT HERMITIAN MANIFOLD [J].
GAUDUCHON, P .
MATHEMATISCHE ANNALEN, 1984, 267 (04) :495-518
[8]  
KOBAYASHI S., 1987, PUBLICATIONS MATH SO, V15
[9]  
Lubke M., 1995, KOBAYASHI HITCHIN CO
[10]   A new geometric construction of compact complex manifolds in any dimension [J].
Meersseman, L .
MATHEMATISCHE ANNALEN, 2000, 317 (01) :79-115