Convexification for an inverse parabolic problem

被引:29
作者
Klibanov, Michael, V [1 ]
Li, Jingzhi [2 ]
Zhang, Wenlong [2 ]
机构
[1] Univ North Carolina Charlotte, Dept Math & Stat, Charlotte, NC 28223 USA
[2] Southern Univ Sci & Technol SUSTech, Dept Math, Shenzhen, Guangdong, Peoples R China
关键词
parabolic equation; coefficient inverse problem; globally convergent numerical method; convexification; Carleman estimate; numerical studies; CONVEXITY; RECOVERY;
D O I
10.1088/1361-6420/ab9893
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A convexification-based numerical method for a coefficient inverse problem for a parabolic PDE is presented. The key element of this method is the presence of the so-called Carleman weight function in the numerical scheme. Convergence analysis ensures the global convergence of this method, as opposed to the local convergence of the conventional least squares minimization techniques. Numerical results demonstrate a good performance.
引用
收藏
页数:32
相关论文
共 43 条
[1]  
Alifanov O M, 1995, EXTREME METHODS SOLV
[2]   Carleman weight functions for a globally convergent numerical method for ill-posed Cauchy problems for some quasilinear PDEs [J].
Bakushinskii, Anatoly B. ;
Klibanov, Michael V. ;
Koshev, Nikolaj A. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 34 :201-224
[3]  
Baudoin L, 2020, CARLEMAN BASED RECON
[4]   CONVERGENT ALGORITHM BASED ON CARLEMAN ESTIMATES FOR THE RECOVERY OF A POTENTIAL IN THE WAVE EQUATION [J].
Baudouin, Lucie ;
de Buhan, Maya ;
Ervedoza, Sylvain .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (04) :1578-1613
[5]  
Beilina L, 2012, APPROXIMATE GLOBAL C
[6]   Globally strongly convex cost functional for a coefficient inverse problem [J].
Beilina, Larisa ;
Klibanov, Michael V. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 22 :272-288
[7]  
Bouchouev I., 2002, Quantitative Finance, V2, P257, DOI 10.1088/1469-7688/2/4/302
[8]  
Boulakia M, 2019, ARXIVHAL02185889
[9]  
BUKHGEIM A. L., 1981, SOVIET MATH DOKL, V17, P244
[10]  
Chavent G, 2009, SCI COMPUT, P1