Enhancement of thermal energy transport across the graphene/ h- BN heterostructure interface

被引:55
作者
Liu, Feng [1 ,2 ]
Zou, Rui [1 ,2 ]
Hu, Ning [1 ,3 ]
Ning, Huiming [1 ]
Yan, Cheng [4 ]
Liu, Yaolu [1 ]
Wu, Liangke [1 ]
Mo, Fuhao [5 ]
Fu, Shaoyun [1 ]
机构
[1] Chongqing Univ, Coll Aerosp Engn, Chongqing 400044, Peoples R China
[2] Chongqing Univ, Postdoctoral Stn Mech, Chongqing 400044, Peoples R China
[3] Chongqing Univ, Key Lab Optoelect Technol & Syst, Educ Minist China, Chongqing 400044, Peoples R China
[4] Queensland Univ Technol, Sch Chem Phys & Mech Engn, Brisbane, Qld 4001, Australia
[5] Hunan Univ, Coll Mech & Vehicle Engn, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
HEXAGONAL BORON-NITRIDE; CONDUCTIVITY; DEFECTS; CONDUCTANCE;
D O I
10.1039/c8nr10468a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Enhancing thermal energy transport is critical for the applications of 2-dimensional materials. Here, we explored the methods of enhancing the interfacial thermal energy transport across the graphene (GR)/hexagonal boron nitride (h-BN) heterostructure interface, and revealed the enhancement mechanisms of interfacial thermal energy transport by applying non-equilibrium molecular dynamics (NEMD) simulations. The computational results indicated that both doping and interface topography optimization could effectively improve the interfacial thermal conductance (ITC) of the GR/h-BN heterostructure. In particular, the enhancement of the zigzag interface topography led to a much better result than the other methods. Doping and interface topography optimization increased the overlap of the phonon density of states (PDOS). Temperature had a negligible effect on the ITC of the GR/h-BN heterostructure when the temperature exceeded 600 K.
引用
收藏
页码:4067 / 4072
页数:6
相关论文
共 48 条
[1]   Lattice thermal conductivity of graphene nanoribbons: Anisotropy and edge roughness scattering [J].
Aksamija, Z. ;
Knezevic, I. .
APPLIED PHYSICS LETTERS, 2011, 98 (14)
[2]  
[Anonymous], 1995, FAST PARALLEL ALGORI
[3]  
[Anonymous], PHYS REV B
[4]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[5]   Thermal contact resistance across nanoscale silicon dioxide and silicon interface [J].
Chen, Jie ;
Zhang, Gang ;
Li, Baowen .
JOURNAL OF APPLIED PHYSICS, 2012, 112 (06)
[6]  
Chen SS, 2012, NAT MATER, V11, P203, DOI [10.1038/NMAT3207, 10.1038/nmat3207]
[7]   A wave-dominated heat transport mechanism for negative differential thermal resistance in graphene/hexagonal boron nitride heterostructures [J].
Chen, Xue-Kun ;
Liu, Jun ;
Peng, Zhi-Hua ;
Du, Dan ;
Chen, Ke-Qiu .
APPLIED PHYSICS LETTERS, 2017, 110 (09)
[8]   Enhanced lithiation in defective graphene [J].
Datta, Dibakar ;
Li, Junwen ;
Koratker, Nikhil ;
Shenoy, Vivek B. .
CARBON, 2014, 80 :305-310
[9]   Molecular dynamics simulations of carbon nanotube/silicon interfacial thermal conductance [J].
Diao, Jiankuai ;
Srivastava, Deepak ;
Menon, Madhu .
JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (16)
[10]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191