Spatiotemporal Satellite Image Fusion Using Deep Convolutional Neural Networks

被引:269
|
作者
Song, Huihui [1 ]
Liu, Qingshan [1 ]
Wang, Guojie [2 ]
Hang, Renlong [1 ]
Huang, Bo [3 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Jiangsu Key Lab Big Data Anal Technol, Jiangsu Collaborat Innovat Ctr Atmospher Environm, Nanjing 210044, Jiangsu, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Forecast & Evaluat Meteoro, Nanjing 210044, Jiangsu, Peoples R China
[3] Chinese Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China
关键词
Convolutional neural network (CNN); nonlinear mapping (NLM); spatial resolution; temporal resolution; REFLECTANCE FUSION; LANDSAT DATA; TIME-SERIES; MODIS; RESOLUTION; MODEL;
D O I
10.1109/JSTARS.2018.2797894
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a novel spatiotemporal fusion method based on deep convolutional neural networks (CNNs) under the application background of massive remote sensing data. In the training stage, we build two five-layer CNNs to deal with the problems of complicated correspondence and large spatial resolution gaps between MODIS and Landsat images. Specifically, we first learn a nonlinear mapping CNN between MODIS and low-spatial-resolution (LSR) Landsat images and then learn a super-resolution CNN between LSR Landsat and original Landsat images. In the prediction stage, instead of directly taking the outputs of CNNs as the fusion result, we design a fusion model consisting of high-pass modulation and a weighting strategy to make full use of the information in prior images. Specifically, we firstmap the input MODIS images to transitional images via the learned nonlinear mapping CNN and further improve the transitional images to LSR Landsat images via the fusion model; then, via the learned SR CNN, the LSR Landsat images are supersolved to transitional images, which are further improved to Landsat images via the fusion model. Compared with the previous learning-based fusion methods, mainly referring to the sparse-representation-based methods, our CNNs-based spatiotemporalmethod has the following advantages: 1) automatically extracting effective image features; 2) learning an end-to-end mapping between MODIS and LSR Landsat images; and 3) generating more favorable fusion results. To examine the performance of the proposed fusion method, we conduct experiments on two representative Landsat-MODIS datasets by comparing with the sparse-representation-based spatiotemporal fusion model. The quantitative evaluations on all possibleprediction dates and the comparison of fusion results on one key date in both visual effect and quantitative evaluationsdemonstrate that the proposed method can generate more accurate fusionresults.
引用
收藏
页码:821 / 829
页数:9
相关论文
共 50 条
  • [41] TWO-PHASE MULTIMODAL IMAGE FUSION USING CONVOLUTIONAL NEURAL NETWORKS
    Kusram, Kushal
    Transue, Shane
    Choi, Min-Hyung
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 1874 - 1878
  • [42] Medical image fusion with deep neural networks
    Liang, Nannan
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [43] DEEP CONVOLUTIONAL NEURAL NETWORKS FEATURES FOR IMAGE RETRIEVAL
    Kanaparthi, Suresh kumar
    Raju, U. S. N.
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2021, 20 (11): : 2613 - 2626
  • [44] Histopathological Image Classification with Deep Convolutional Neural Networks
    Alom, Md Zahangir
    Aspiras, Theus
    Taha, Tarek M.
    Asari, Vijayan K.
    APPLICATIONS OF MACHINE LEARNING, 2019, 11139
  • [45] Robustness of Deep Convolutional Neural Networks for Image Recognition
    Ulicny, Matej
    Lundstrom, Jens
    Byttner, Stefan
    INTELLIGENT COMPUTING SYSTEMS, 2016, 597 : 16 - 30
  • [46] ROBUSTNESS OF DEEP CONVOLUTIONAL NEURAL NETWORKS FOR IMAGE DEGRADATIONS
    Ghosh, Sanjukta
    Shet, Rohan
    Amon, Peter
    Hutter, Andreas
    Kaup, Andre
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 2916 - 2920
  • [47] Evolving Deep Convolutional Neural Networks for Image Classification
    Sun, Yanan
    Xue, Bing
    Zhang, Mengjie
    Yen, Gary G.
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2020, 24 (02) : 394 - 407
  • [48] Deep Convolutional Neural Networks for Hyperspectral Image Classification
    Hu, Wei
    Huang, Yangyu
    Wei, Li
    Zhang, Fan
    Li, Hengchao
    JOURNAL OF SENSORS, 2015, 2015
  • [49] Deep OCT image compression with convolutional neural networks
    Guo, Pengfei
    Li, Dawei
    Li, Xingde
    BIOMEDICAL OPTICS EXPRESS, 2020, 11 (07): : 3543 - 3554
  • [50] Cloud Classification of Satellite Image Based on Convolutional Neural Networks
    Cai, Keyang
    Wang, Hong
    PROCEEDINGS OF 2017 8TH IEEE INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2017), 2017, : 874 - 877