Bregman Extragradient Method with Monotone Rule of Step Adjustment*

被引:16
|
作者
Denisov, S. V. [1 ]
Semenov, V. V. [1 ]
Stetsyuk, P. I. [2 ]
机构
[1] Taras Shevchenko Natl Univ Kyiv, Kiev, Ukraine
[2] Natl Acad Sci Ukraine, VM Glushkov Cybernet Inst, Kiev, Ukraine
关键词
variational inequality; pseudo-monotonicity; Lipschitz condition; extragradient method; Bregman divergence; convergence; VARIATIONAL-INEQUALITIES; CONVERGENCE;
D O I
10.1007/s10559-019-00144-5
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
A new extragradient-type method is proposed for approximate solution of variational inequalities with pseudo-monotone and Lipschitz-continuous operators acting in a finite-dimensional linear normed space. The method uses Bregman divergence (distance) instead of Euclidean distance and a new adjustment of step size, which does not require knowledge of the Lipschitz constant of the operator. In contrast to the previously used rules for choosing the step size, the method proposed in the paper does not perform additional calculations for the operator values and prox-map. A theorem on the convergence of the method is proved.
引用
收藏
页码:377 / 383
页数:7
相关论文
共 50 条
  • [41] A generalized extragradient method for variational inequalities of the second kind
    Uko, Livinus U.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (01)
  • [42] A modified extragradient method for inverse-monotone operators in Banach spaces
    Li, Liwei
    Song, W.
    JOURNAL OF GLOBAL OPTIMIZATION, 2009, 44 (04) : 609 - 629
  • [43] A Bregman subgradient extragradient method with self-adaptive technique for solving variational inequalities in reflexive Banach spaces
    Jolaoso, L. O.
    Oyewole, O. K.
    Aremu, K. O.
    OPTIMIZATION, 2022, 71 (13) : 3835 - 3860
  • [44] Modified extragradient algorithms for solving monotone variational inequalities and fixed point problems
    Zhao, Xiaopeng
    Yao, Yonghong
    OPTIMIZATION, 2020, 69 (09) : 1987 - 2002
  • [45] A modified extragradient method for inverse-monotone operators in Banach spaces
    Liwei Li
    W. Song
    Journal of Global Optimization, 2009, 44 : 609 - 629
  • [46] Revisiting the extragradient method for finding the minimum-norm solution of non-Lipschitzian pseudo-monotone variational inequalities
    Duong Viet Thong
    Li, Xiaoxiao
    Dong, Qiao-Li
    Nguyen Thi Cam Van
    Hoang Van Thang
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (04)
  • [47] An alternative extragradient projection method for quasi-equilibrium problems
    Chen, Haibin
    Wang, Yiju
    Xu, Yi
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [48] ON THE COMPLEXITY OF THE HYBRID PROXIMAL EXTRAGRADIENT METHOD FOR THE ITERATES AND THE ERGODIC MEAN
    Monteiro, Renato D. C.
    Svaiter, B. F.
    SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (06) : 2755 - 2787
  • [49] A Two-Step Extragradient Method for Variational Inequalities
    Zykina, A. V.
    Melen'chuk, N. V.
    RUSSIAN MATHEMATICS, 2010, 54 (09) : 71 - 73
  • [50] WEAK CONVERGENCE THEOREM BY A MODIFIED EXTRAGRADIENT METHOD FOR NONEXPANSIVE MAPPINGS AND MONOTONE MAPPINGS
    Ceng, L. C.
    Huang, S.
    Petrusel, A.
    TAIWANESE JOURNAL OF MATHEMATICS, 2009, 13 (01): : 225 - 238