Neighbor Distinguishing Edge Colorings Via the Combinatorial Nullstellensatz Revisited

被引:27
作者
Przybylo, Jakub [1 ]
Wong, Tsai-Lien [2 ]
机构
[1] AGH Univ Sci & Technol, PL-30059 Krakow, Poland
[2] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 80424, Taiwan
关键词
neighbor distinguishing proper edge coloring; neighbor sum distinguishing edge coloring; adjacent strong chromatic index; Combinatorial Nullstellensatz; list edge coloring; IRREGULARITY STRENGTH; DISTINGUISHING INDEX; GRAPHS;
D O I
10.1002/jgt.21852
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider a simple graph G=(V,E) and its proper edge coloring c with the elements of the set {1,...,k}. We say that c is neighbor set distinguishing (or adjacent strong) if for every edge uvE, the set of colors incident with u is distinct from the set of colors incident with v. Let us then consider a stronger requirement and suppose we wish to distinguishing adjacent vertices by sums of their incident colors. In both problems the challenging conjectures presume that such colorings exist for any graph G containing no isolated edges if only k(G)+2. We prove that in both problems k=(G)+3 col (G)-4 is sufficient. The proof is based on the Combinatorial Nullstellensatz, applied in the sum environment. In fact the identical bound also holds if we use any set of k real numbers instead of {1,...,k} as edge colors, and the same is true in list versions of the both concepts. In particular, we therefore obtain that lists of length (G)+14 ((G)+13 in fact) are sufficient for planar graphs. (C) 2014 Wiley Periodicals, Inc.
引用
收藏
页码:299 / 312
页数:14
相关论文
共 20 条
[1]   Degree constrained subgraphs [J].
Addario-Berry, L. ;
Dalal, K. ;
Reed, B. A. .
DISCRETE APPLIED MATHEMATICS, 2008, 156 (07) :1168-1174
[2]   Vertex-colouring edge-weightings [J].
Addario-Berry, Louigi ;
Dalal, Ketan ;
McDiarmid, Colin ;
Reed, Bruce A. ;
Thomason, Andrew .
COMBINATORICA, 2007, 27 (01) :1-12
[3]   r-Strong edge colorings of graphs [J].
Akbari, S. ;
Bidkhori, H. ;
Nosrati, N. .
DISCRETE MATHEMATICS, 2006, 306 (23) :3005-3010
[4]   Combinatorial Nullstellensatz [J].
Alon, N .
COMBINATORICS PROBABILITY & COMPUTING, 1999, 8 (1-2) :7-29
[5]  
[Anonymous], 2005, Graph Theory
[6]   Adjacent vertex distinguishing edge-colorings [J].
Balister, P. N. ;
Gyori, E. ;
Lehel, J. ;
Schelp, R. H. .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2007, 21 (01) :237-250
[7]  
Chartrand G., 1986, Congr. Numer., V64
[8]   On the neighbour-distinguishing index of a graph [J].
Edwards, Keith ;
Hornak, Mirko ;
Wozniak, Mariusz .
GRAPHS AND COMBINATORICS, 2006, 22 (03) :341-350
[9]   Neighbor Sum Distinguishing Index [J].
Flandrin, Evelyne ;
Marczyk, Antoni ;
Przybylo, Jakub ;
Sacle, Jean-Francois ;
Wozniak, Mariusz .
GRAPHS AND COMBINATORICS, 2013, 29 (05) :1329-1336
[10]   On graph irregularity strength [J].
Frieze, A ;
Gould, RJ ;
Karonski, M ;
Pfender, F .
JOURNAL OF GRAPH THEORY, 2002, 41 (02) :120-137