Modeling of self-controlling hyperthermia based on nickel alloy ferrofluids: Proposition of new nanoparticles

被引:13
作者
Delavari, Hamid H. [1 ,2 ]
Hosseini, Hamid R. Madaah [1 ,3 ]
Wolff, Max [2 ]
机构
[1] Sharif Univ Technol, Inst Nanosci & Nanotechnol, Tehran 1458889694, Iran
[2] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden
[3] Sharif Univ Technol, Dept Mat Sci & Engn, Tehran 1458889694, Iran
关键词
Hyperthermia; Self-controlling; Nickel alloy; Nanoparticle; Modeling; MAGNETIC PARTICLE HYPERTHERMIA; IRON-OXIDE NANOPARTICLES; CURIE-TEMPERATURE; MAGNETOCRYSTALLINE ANISOTROPY; FERROMAGNETIC PROPERTIES; FLUID HYPERTHERMIA; NI; FIELD; PARAMETERS; DEPENDENCE;
D O I
10.1016/j.jmmm.2013.01.027
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In order to provide sufficient heat without overheating healthy tissue in magnetic fluid hyperthermia (MFH), a careful design of the magnetic properties of nanoparticles is essential. We perform a systematic calculation of magnetic properties of Ni-alloy nanoparticles. Stoner-Wohlfarth model based theories (SWMBTs) are considered and the linear response theory (LRT) is used to extract the hysteresis loop of nickel alloy nanoparticles in alternating magnetic fields. It is demonstrated that in the safe range of magnetic field intensity and frequency the LRT cannot be used for the calculation of the area in the hysteresis for magnetic fields relevant for hyperthermia. The best composition and particle size for self-controlling hyperthermia with nickel alloys is determined based on SWMBTs. It is concluded that Ni-V and Ni-Zn are good candidates for self-controlling hyperthermia. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:59 / 63
页数:5
相关论文
共 44 条
[1]   SATURATION MAGNETIZATION IN COPPER-NICKEL ALLOYS [J].
AHERN, SA ;
SUCKSMITH, W .
PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON SECTION B, 1956, 69 (10) :1050-1052
[2]   Ni1-xCrx alloy for self controlled magnetic hyperthermia [J].
Akin, Y. ;
Obaidat, I. M. ;
Issa, B. ;
Haik, Y. .
CRYSTAL RESEARCH AND TECHNOLOGY, 2009, 44 (04) :386-390
[3]   TEMPERATURE AND CONCENTRATION-DEPENDENCE OF MAGNETOCRYSTALLINE ANISOTROPY OF NIV ALLOYS [J].
AMIGHIAN, J ;
CORNER, WD .
IEEE TRANSACTIONS ON MAGNETICS, 1977, 13 (01) :928-931
[4]   Possible low-TC nanoparticles for use in magnetic hyperthermia treatments [J].
Apostolova, I. ;
Wesselinowa, J. M. .
SOLID STATE COMMUNICATIONS, 2009, 149 (25-26) :986-990
[5]   USABLE FREQUENCIES IN HYPERTHERMIA WITH THERMAL SEEDS [J].
ATKINSON, WJ ;
BREZOVICH, IA ;
CHAKRABORTY, DP .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1984, 31 (01) :70-75
[6]   Synthesis of copper-nickel nanoparticles prepared by mechanical milling for use in magnetic hyperthermia [J].
Ban, Irena ;
Stergar, Janja ;
Drofenik, Miha ;
Ferk, Gregor ;
Makovec, Darko .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2011, 323 (17) :2254-2258
[7]   Spin effects in single-electron tunnelling [J].
Barnas, J. ;
Weymann, I. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (42)
[8]   Synthesis and investigation of magnetic properties of Gd-substituted Mn-Zn ferrite nanoparticles as a potential low-TC agent for magnetic fluid hyperthermia [J].
Brusentsova, TN ;
Brusentsov, NA ;
Kuznetsov, VD ;
Nikiforov, VN .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2005, 293 (01) :298-302
[9]   Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization [J].
Carrey, J. ;
Mehdaoui, B. ;
Respaud, M. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (08)
[10]   Synthesis and characterization of polymer encapsulated Cu-Ni magnetic nanoparticles for hyperthermia applications [J].
Chatterjee, J ;
Bettge, M ;
Haik, Y ;
Chen, CJ .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2005, 293 (01) :303-309