Evolving Training Sets for Improved Transfer Learning in Brain Computer Interfaces

被引:5
作者
Adair, Jason [1 ]
Brownlee, Alexander [1 ]
Daolio, Fabio [1 ]
Ochoa, Gabriela [1 ]
机构
[1] Univ Stirling, Comp Sci & Math, Stirling, Scotland
来源
MACHINE LEARNING, OPTIMIZATION, AND BIG DATA, MOD 2017 | 2018年 / 10710卷
基金
英国工程与自然科学研究理事会;
关键词
Optimisation; Machine learning; Ensemble Brain-computer interface; P300; Evolutionary computation Transfer learning;
D O I
10.1007/978-3-319-72926-8_16
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A new proof-of-concept method for optimising the performance of Brain Computer Interfaces (BCI) while minimising the quantity of required training data is introduced. This is achieved by using an evolutionary approach to rearrange the distribution of training instances, prior to the construction of an Ensemble Learning Generic Information (ELGI) model. The training data from a population was optimised to emphasise generality of the models derived from it, prior to a recombination with participant-specific data via the ELGI approach, and training of classifiers. Evidence is given to support the adoption of this approach in the more difficult BCI conditions: smaller training sets, and those suffering from temporal drift. This paper serves as a case study to lay the groundwork for further exploration of this approach.
引用
收藏
页码:186 / 197
页数:12
相关论文
共 16 条
[1]   Optimizing spatial filters for robust EEG single-trial analysis [J].
Blankertz, Benjamin ;
Tomioka, Ryota ;
Lemm, Steven ;
Kawanabe, Motoaki ;
Mueller, Klaus-Robert .
IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (01) :41-56
[2]   An approach to improve the performance of subject-independent BCIs-based on motor imagery allocating subjects by gender [J].
Cantillo-Negrete, Jessica ;
Gutierrez-Martinez, Josefina ;
Carino-Escobar, Ruben I. ;
Carrillo-Mora, Paul ;
Elias-Vinas, David .
BIOMEDICAL ENGINEERING ONLINE, 2014, 13
[3]   Brain Computer Interfaces, a Review [J].
Fernando Nicolas-Alonso, Luis ;
Gomez-Gil, Jaime .
SENSORS, 2012, 12 (02) :1211-1279
[4]   An efficient P300-based brain-computer interface for disabled subjects [J].
Hoffmann, Ulrich ;
Vesin, Jean-Marc ;
Ebrahimi, Touradj ;
Diserens, Karin .
JOURNAL OF NEUROSCIENCE METHODS, 2008, 167 (01) :115-125
[5]   Simultaneous inference in general parametric models [J].
Hothorn, Torsten ;
Bretz, Frank ;
Westfall, Peter .
BIOMETRICAL JOURNAL, 2008, 50 (03) :346-363
[6]   Transfer Learning in Brain-Computer Interfaces [J].
Jayaram, Vinay ;
Alamgir, Morteza ;
Altun, Yasemin ;
Schoelkopf, Bernhard ;
Grosse-Wentrup, Moritz .
IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2016, 11 (01) :20-31
[7]  
Khatwani P., 2013, International Journal of Advanced Research in Computer and Communication Engineering, V2, P1091
[8]   An Overview of Longitudinal Data Analysis Methods for Neurological Research [J].
Locascio, Joseph J. ;
Atri, Alireza .
DEMENTIA AND GERIATRIC COGNITIVE DISORDERS EXTRA, 2011, 1 (01) :330-357
[9]   Signal Processing Approaches to Minimize or Suppress Calibration Time in Oscillatory Activity-Based Brain-Computer Interfaces [J].
Lotte, Fabien .
PROCEEDINGS OF THE IEEE, 2015, 103 (06) :871-890
[10]   Overlapped Partitioning for Ensemble Classifiers of P300-Based Brain-Computer Interfaces [J].
Onishi, Akinari ;
Natsume, Kiyohisa .
PLOS ONE, 2014, 9 (04)