Using an Approximate Bayesian Bootstrap to multiply impute nonignorable missing data

被引:34
|
作者
Siddique, Juned [1 ]
Belin, Thomas R. [2 ]
机构
[1] Univ Chicago, Dept Hlth Studies, Chicago, IL 60637 USA
[2] Univ Calif Los Angeles, Dept Biostat, Los Angeles, CA 90095 USA
关键词
D O I
10.1016/j.csda.2008.07.042
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
An Approximate Bayesian Bootstrap (ABB) offers advantages in incorporating appropriate uncertainty when imputing missing data, but most implementations of the ABB have lacked the ability to handle nonignorable missing data where the probability of missingness depends on unobserved values. This paper outlines a strategy for using an ABB to multiply impute nonignorable missing data. The method allows the user to draw inferences and perform sensitivity analyses when the missing data mechanism cannot automatically be assumed to be ignorable. Results from imputing missing values in a longitudinal depression treatment trial as well as a simulation study are presented to demonstrate the method's performance. We show that a procedure that uses a different type of ABB for each imputed data set accounts for appropriate uncertainty and provides nominal coverage. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:405 / 415
页数:11
相关论文
共 50 条
  • [1] Bootstrap and Nonparametric Predictors to Impute Missing Data
    Di Ciaccio, Agostino
    CLASSIFICATION AND MULTIVARIATE ANALYSIS FOR COMPLEX DATA STRUCTURES, 2011, : 203 - 210
  • [2] MISSING RESPONSE DATA - TO IMPUTE OR NOT TO IMPUTE
    BOSWICK, JM
    LEE, KL
    CALIFF, RM
    TOPOL, EJ
    CONTROLLED CLINICAL TRIALS, 1988, 9 (03): : 261 - 261
  • [3] Bayesian Quantile Regression for Longitudinal Studies with Nonignorable Missing Data
    Yuan, Ying
    Yin, Guosheng
    BIOMETRICS, 2010, 66 (01) : 105 - 114
  • [4] Bayesian latent factor on image regression with nonignorable missing data
    Wang, Xiaoqing
    Song, Xinyuan
    Zhu, Hongtu
    STATISTICS IN MEDICINE, 2021, 40 (04) : 920 - 932
  • [5] Bayesian semiparametric modeling of response mechanism for nonignorable missing data
    Shonosuke Sugasawa
    Kosuke Morikawa
    Keisuke Takahata
    TEST, 2022, 31 : 101 - 117
  • [6] Impute the missing data using retrieved dropouts
    Wang, Shuai
    Hu, Haoyan
    BMC MEDICAL RESEARCH METHODOLOGY, 2022, 22 (01)
  • [7] Bayesian semiparametric modeling of response mechanism for nonignorable missing data
    Sugasawa, Shonosuke
    Morikawa, Kosuke
    Takahata, Keisuke
    TEST, 2022, 31 (01) : 101 - 117
  • [8] Bayesian Inference for Randomized Experiments with Noncompliance and Nonignorable Missing Data
    Mercatanti, Andrea
    ADVANCES IN COMPLEX DATA MODELING AND COMPUTATIONAL METHODS IN STATISTICS, 2015, : 161 - 172
  • [9] Impute the missing data using retrieved dropouts
    Shuai Wang
    Haoyan Hu
    BMC Medical Research Methodology, 22
  • [10] Bayesian analysis of nonlinear structural equation models with nonignorable missing data
    Lee, Sik-Yum
    Tang, Nian-Sheng
    PSYCHOMETRIKA, 2006, 71 (03) : 541 - 564