Field emission properties of carbon nanowalls prepared by RF magnetron sputtering

被引:4
作者
Guzman-Olivos, F. [1 ]
Espinoza-Gonzalez, R. [2 ]
Fuenzalida, V. [3 ]
Morell, G. [4 ]
机构
[1] Univ Catolica Norte, Fac Ciencias, Dept Fis, Antofagasta, Chile
[2] Univ Chile, Dept Ingn Quim Biotecnol & Mat, FCFM, LabMAM, Santiago, Chile
[3] Univ Chile, Dept Fis, FCFM, Santiago, Chile
[4] Univ Puerto Rico, Dept Phys, San Juan, PR 00936 USA
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2019年 / 125卷 / 05期
关键词
GRAPHITE; GRAPHENE; GROWTH; FABRICATION; NANOFLAKES; MECHANISM; UNIFORM;
D O I
10.1007/s00339-019-2645-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Carbon nanowalls were prepared on silicon substrates by radio frequency magnetron sputtering under an argon-hydrogen mixture, at different hydrogen fluxes and varying the substrate temperature and deposition times. Scanning and transmission electron microscopy showed that carbon films deposited at 510 degrees C are nanostructured polycrystalline carbon nanowalls with crystals of about 3nm inside the flakes. The hydrogen flow induces the growth of nanowalls oriented perpendicularly to the substrate, and the density (amount) of these nanowalls decrease as the hydrogen flow increases. Field emission measurements showed that carbon nanowalls grown in hydrogen have a turn-on voltage of 2.0V/mu m, lower than those grown in pure argon with 4.5V/mu m.
引用
收藏
页数:9
相关论文
共 46 条
[1]   Measuring the degree of stacking order in graphite by Raman spectroscopy [J].
Cancado, L. G. ;
Takai, K. ;
Enoki, T. ;
Endo, M. ;
Kim, Y. A. ;
Mizusaki, H. ;
Speziali, N. L. ;
Jorio, A. ;
Pimenta, M. A. .
CARBON, 2008, 46 (02) :272-275
[2]   Pyrolytic synthesis of MoO3 nanoplates within foam-like carbon nanoflakes for enhanced lithium ion storage [J].
Cao, Daxian ;
Dai, Yanzhu ;
Xie, Sanmu ;
Wang, Hongkang ;
Niu, Chunming .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2018, 514 :686-693
[3]   Low threshold field emission from nanocrystalline diamond/carbon nanowall composite films [J].
Cheng, C. Y. ;
Nakashima, M. ;
Teii, K. .
DIAMOND AND RELATED MATERIALS, 2012, 27-28 :40-44
[4]   Nanomaterial-based x-ray sources [J].
Cole, Matthew T. ;
Parmee, R. J. ;
Milne, William I. .
NANOTECHNOLOGY, 2016, 27 (08)
[5]   Vapor-solid preparation of densely distributed and small-sized graphene nanoflakes on one-dimensional nanomaterials for low-field and highly stable field emission [J].
Deng, Jian-Hua ;
Deng, Li-Na ;
Liu, Rui-Nan ;
Han, A-Long ;
Li, De-Jun ;
Cheng, Guo-An .
CARBON, 2016, 102 :1-9
[6]   Probing the Nature of Defects in Graphene by Raman Spectroscopy [J].
Eckmann, Axel ;
Felten, Alexandre ;
Mishchenko, Artem ;
Britnell, Liam ;
Krupke, Ralph ;
Novoselov, Kostya S. ;
Casiraghi, Cinzia .
NANO LETTERS, 2012, 12 (08) :3925-3930
[7]   Carbon Nanosheets: Synthesis and Application [J].
Fan, Huailin ;
Shen, Wenzhong .
CHEMSUSCHEM, 2015, 8 (12) :2004-2027
[8]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[9]   Interpretation of Raman spectra of disordered and amorphous carbon [J].
Ferrari, AC ;
Robertson, J .
PHYSICAL REVIEW B, 2000, 61 (20) :14095-14107
[10]   Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon [J].
Ferrari, AC ;
Robertson, J .
PHYSICAL REVIEW B, 2001, 64 (07)