Exploring the potential of in silico machine learning tools for the prediction of acute Daphnia magna nanotoxicity

被引:10
|
作者
Balraadjsing, Surendra [1 ]
Peijnenburg, Willie J. G. M. [1 ,2 ]
Vijver, Martina G. [1 ]
机构
[1] Leiden Univ, Inst Environm Sci CML, POB 9518, NL-2300 RA Leiden, Netherlands
[2] Natl Inst Publ Hlth & Environm RIVM, Ctr Safety Subst & Prod, POB 1, NL-3720 BA Bilthoven, Netherlands
基金
欧洲研究理事会;
关键词
Screening risk assessment; Metallic nanoparticles; In vivo; In silico models; Machine learning; Ecotoxicity; METAL-OXIDE NANOPARTICLES; ENGINEERED NANOMATERIALS; RISK-ASSESSMENT; TOXICITY; MODELS;
D O I
10.1016/j.chemosphere.2022.135930
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Engineered nanomaterials (ENMs) are ubiquitous nowadays, finding their application in different fields of technology and various consumer products. Virtually any chemical can be manipulated at the nano-scale to display unique characteristics which makes them appealing over larger sized materials. As the production and development of ENMs have increased considerably over time, so too have concerns regarding their adverse effects and environmental impacts. It is unfeasible to assess the risks associated with every single ENM through in vivo or in vitro experiments. As an alternative, in silico methods can be employed to evaluate ENMs. To perform such an evaluation, we collected data from databases and literature to create classification models based on machine learning algorithms in accordance with the principles laid out by the OECD for the creation of QSARs. The aim was to investigate the performance of various machine learning algorithms towards predicting a well-defined in vivo toxicity endpoint (Daphnia magna immobilization) and also to identify which features are important drivers of D. magna in vivo nanotoxicity. Results indicated highly comparable model performance between all algorithms and predictive performance exceeding similar to 0.7 for all evaluated metrics (e.g. accuracy, sensitivity, specificity, balanced accuracy, Matthews correlation coefficient, area under the receiver operator characteristic curve). The random forest, artificial neural network, and k-nearest neighbor models displayed the best performance but this was only marginally better compared to the other models. Furthermore, the variable importance analysis indicated that molecular descriptors and physicochemical properties were generally important within most models, while features related to the exposure conditions produced slightly conflicting results. Lastly, results also indicate that reliable and robust machine learning models can be generated for in vivo endpoints with smaller datasets.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] In Silico prediction of inhibitors for multiple transporters via machine learning methods
    Duan, Hao
    Lou, Chaofeng
    Gu, Yaxin
    Wang, Yimeng
    Li, Weihua
    Liu, Guixia
    Tang, Yun
    MOLECULAR INFORMATICS, 2024, 43 (03)
  • [42] In silico Prediction of Inhibitory Constant of Thrombin Inhibitors using Machine Learning
    Zhao, Junnan
    Zhu, Lu
    Zhou, Weineng
    Yin, Lingfeng
    Wang, Yuchen
    Fan, Yuanrong
    Chen, Yadong
    Liu, Haichun
    COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, 2018, 21 (09) : 662 - 669
  • [43] In silico prediction of pregnane X receptor activators by machine learning approaches
    Ung, C. Y.
    Li, H.
    Yap, C. W.
    Chen, Y. Z.
    MOLECULAR PHARMACOLOGY, 2007, 71 (01) : 158 - 168
  • [44] The use of machine learning and nonlinear statistical tools for ADME prediction
    Sakiyama, Yojiro
    EXPERT OPINION ON DRUG METABOLISM & TOXICOLOGY, 2009, 5 (02) : 149 - 169
  • [45] Disruption Prediction Approaches Using Machine Learning Tools in Tokamaks
    Sias, G.
    Cannas, B.
    Carcangiu, S.
    Fanni, A.
    Murari, A.
    Pau, A.
    2019 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM - SPRING (PIERS-SPRING), 2019, : 2880 - 2890
  • [46] Machine learning methods, databases and tools for drug combination prediction
    Wu, Lianlian
    Wen, Yuqi
    Leng, Dongjin
    Zhang, Qinglong
    Dai, Chong
    Wang, Zhongming
    Liu, Ziqi
    Yan, Bowei
    Zhang, Yixin
    Wang, Jing
    He, Song
    Bo, Xiaochen
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (01)
  • [47] PREDICTION OF REGULATORY sRNAs IN PROKARYOTES USING MACHINE LEARNING TOOLS
    Abu-halaweh, Nael
    Sabnis, Amit
    Harrison, Robert
    BIOINFORMATICS 2011, 2011, : 75 - 81
  • [48] Machine Learning Tools for the Prediction of Fresh Produce Procurement Price
    Jafari, Fatemeh
    Mousavi, Jamshid
    Ponnambalam, Kumaraswamy
    Karray, Fakhri
    Nassar, Lobna
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 3091 - 3095
  • [49] Exploring the potential of machine learning in gynecological care: a review
    Khan, Imran
    Khare, Brajesh Kumar
    ARCHIVES OF GYNECOLOGY AND OBSTETRICS, 2024, 309 (06) : 2347 - 2365
  • [50] In silico prediction of chemical-induced hematotoxicity with machine learning and deep learning methods
    Hua, Yuqing
    Shi, Yinping
    Cui, Xueyan
    Li, Xiao
    MOLECULAR DIVERSITY, 2021, 25 (03) : 1585 - 1596