The Kahler-Ricci Flow on Projective Bundles

被引:23
|
作者
Song, Jian [1 ]
Szekelyhidi, Gabor [2 ]
Weinkove, Ben [3 ]
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[2] Columbia Univ, Dept Math, New York, NY 10027 USA
[3] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
EINSTEIN METRICS; SCALAR CURVATURE; CONVERGENCE; MANIFOLDS; STABILITY;
D O I
10.1093/imrn/rnr265
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the behavior of the Kahler-Ricci flow on projective bundles. We show that if the initial metric is in a suitable Kahler class, then the fibers collapse in finite time and the metrics converge subsequentially in the Gromov-Hausdorff sense to a metric on the base.
引用
收藏
页码:243 / 257
页数:15
相关论文
共 50 条