Multi-source Transfer Learning for Deep Reinforcement Learning

被引:2
作者
Garcia-Ramirez, Jesus [1 ]
Morales, Eduardo [1 ]
Escalante, Hugo Jair [1 ]
机构
[1] Inst Nacl Astrofis Opt & Electr, Sta Maria Tonantzintla, Puebla 72840, Mexico
来源
PATTERN RECOGNITION (MCPR 2021) | 2021年 / 12725卷
关键词
Transfer learning; Deep reinforcement learning; Multi source transfer;
D O I
10.1007/978-3-030-77004-4_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep reinforcement learning has obtained impressive performance in challenging tasks in recent years. Nevertheless, it has important limitations such as long training times and the number instances that are needed to achieve acceptable performance. Transfer learning offers an alternative to alleviate these limitations. In this paper, we propose a novel method for transferring knowledge from more than one source tasks. First, we select the best source tasks using a regressor that predicts the performance of a pre-trained model in the target task. Then, we apply a selection of relevant convolutional kernels for the target task in order to find a target model with similar number of parameters compared to the source ones. According to the results, our approach outperforms the accumulated reward obtained when learning from scratch in 20.62% using lower parameters (about 56% of the total, depending on the specific game).
引用
收藏
页码:131 / 140
页数:10
相关论文
共 20 条
[1]  
Rusu AA, 2016, Arxiv, DOI [arXiv:1511.06295, DOI 10.48550/ARXIV.1511.06295]
[2]   The Arcade Learning Environment: An Evaluation Platform for General Agents [J].
Bellemare, Marc G. ;
Naddaf, Yavar ;
Veness, Joel ;
Bowling, Michael .
JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2013, 47 :253-279
[3]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[4]  
Buitinck L., 2013, ECML PKDD WORKSHOP L, P108
[5]  
de la Cruz G., 2016, INITIAL PROGR TRANSF
[6]  
Hester T, 2018, AAAI CONF ARTIF INTE, P3223
[7]  
Ma HM, 2018, Pretraining deep actor-critic reinforcement learning algorithms with expert demonstrations
[8]  
Mittel A, 2018, Arxiv, DOI arXiv:1809.00397
[9]   Human-level control through deep reinforcement learning [J].
Mnih, Volodymyr ;
Kavukcuoglu, Koray ;
Silver, David ;
Rusu, Andrei A. ;
Veness, Joel ;
Bellemare, Marc G. ;
Graves, Alex ;
Riedmiller, Martin ;
Fidjeland, Andreas K. ;
Ostrovski, Georg ;
Petersen, Stig ;
Beattie, Charles ;
Sadik, Amir ;
Antonoglou, Ioannis ;
King, Helen ;
Kumaran, Dharshan ;
Wierstra, Daan ;
Legg, Shane ;
Hassabis, Demis .
NATURE, 2015, 518 (7540) :529-533
[10]   Multisource Transfer Double DQN Based on Actor Learning [J].
Pan, Jie ;
Wang, Xuesong ;
Cheng, Yuhu ;
Yu, Qiang .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (06) :2227-2238