Signed 2-independence function;
Signed 2-independence number;
Cartesian product;
Directed cycle;
Directed path;
D O I:
暂无
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
A two-valued function f : V (D) -> {-1,1} defined on the vertices of a digraph D = (V (D), A(D)) is called a signed 2-independence function if f (N- [nu]) <= 1 for every nu in D. The weight of a signed 2-independence function is f (V (D)) = Sigma(nu is an element of V(D)) f (nu). The maximum weight of a signed 2-independence function of D is the signed 2-independence number alpha(2)(s)(D) of D. Let C-m x P-n, be the Cartesian product of directed cycle C-m and directed path P-n. In this paper, we determine the exact values of alpha(2)(s) (C-m x P-n) when 2 <= m <= 5 and n >= 1.
机构:
Henan Normal Univ, Sch Math & Informat Sci, Xinxiang 453007, Henan, Peoples R ChinaHenan Normal Univ, Sch Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
机构:
Univ Maribor, Fac Elect Engn & Comp Sci, Koroska Cesta 46, Maribor 2000, SloveniaUniv Maribor, Fac Elect Engn & Comp Sci, Koroska Cesta 46, Maribor 2000, Slovenia
Korze, Danilo
Vesel, Aleksander
论文数: 0引用数: 0
h-index: 0
机构:
Univ Maribor, Fac Nat Sci & Math, Koroska Cesta 160, Maribor 2000, SloveniaUniv Maribor, Fac Elect Engn & Comp Sci, Koroska Cesta 46, Maribor 2000, Slovenia