Informative priors and the analogy between quantum and classical heat engines

被引:9
作者
Thomas, George [1 ]
Aneja, Preety [1 ]
Johal, Ramandeep S. [1 ]
机构
[1] Indian Inst Sci Educ & Res Mohali, Sect 81, Mohali 140306, India
关键词
THERMODYNAMICS;
D O I
10.1088/0031-8949/2012/T151/014031
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
When incomplete information about the control parameters is quantified as a prior distribution, a subtle connection emerges between quantum heat engines and their classical analogues. We study the quantum model where the uncertain parameters are the intrinsic energy scales and compare it with the classical models where the intermediate temperature is the uncertain parameter. The prior distribution quantifying the incomplete information has the form pi(x) proportional to 1/x in both the quantum and the classical models. The expected efficiency calculated in the near-equilibrium limit approaches the value of one third of Carnot efficiency.
引用
收藏
页数:6
相关论文
共 14 条
[1]  
Allahverdyan AE, 2004, J MOD OPTIC, V51, P2703, DOI [10.1080/09500340408231829, 10.1080/09500340412331286694]
[2]   Work extremum principle: Structure and function of quantum heat engines [J].
Allahverdyan, Armen E. ;
Johal, Ramandeep S. ;
Mahler, Guenter .
PHYSICAL REVIEW E, 2008, 77 (04)
[3]   EFFICIENCY OF A CARNOT ENGINE AT MAXIMUM POWER OUTPUT [J].
CURZON, FL ;
AHLBORN, B .
AMERICAN JOURNAL OF PHYSICS, 1975, 43 (01) :22-24
[4]   Energetics of quantum correlations [J].
Dillenschneider, R. ;
Lutz, E. .
EPL, 2009, 88 (05)
[5]   Efficiency at Maximum Power of Low-Dissipation Carnot Engines [J].
Esposito, Massimiliano ;
Kawai, Ryoichi ;
Lindenberg, Katja ;
Van den Broeck, Christian .
PHYSICAL REVIEW LETTERS, 2010, 105 (15)
[6]   UNIFIED QUANTUM-THEORY OF MECHANICS AND THERMODYNAMICS .2A. AVAILABLE ENERGY [J].
HATSOPOULOS, GN ;
GYFTOPOULOS, EP .
FOUNDATIONS OF PHYSICS, 1976, 6 (02) :127-141
[7]   PRIOR PROBABILITIES [J].
JAYNES, ET .
IEEE TRANSACTIONS ON SYSTEMS SCIENCE AND CYBERNETICS, 1968, SSC4 (03) :227-&
[8]   Universal efficiency at optimal work with Bayesian statistics [J].
Johal, Ramandeep S. .
PHYSICAL REVIEW E, 2010, 82 (06)
[9]   The second law, Maxwell's demon, and work derivable from quantum heat engines [J].
Kieu, TD .
PHYSICAL REVIEW LETTERS, 2004, 93 (14) :140403-1
[10]   How Small Can Thermal Machines Be? The Smallest Possible Refrigerator [J].
Linden, Noah ;
Popescu, Sandu ;
Skrzypczyk, Paul .
PHYSICAL REVIEW LETTERS, 2010, 105 (13)