The core of a module over a two-dimensional regular local ring

被引:8
作者
Mohan, R
机构
[1] Department of Mathematics, Purdue University, West Lafayette
关键词
D O I
10.1006/jabr.1996.6823
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper explicitly determines the core of a torsion-free, integrally closed module over a two-dimensional regular local ring. It is analogous to a result of Huneke and Swanson which determines the core of an integrally closed ideal. The main result asserts that the core of a finitely generated, torsion-free, integrally closed module over a two-dimensional regular local ring is the product of the module and a certain Fitting ideal of the module. The technical tools used are quadratic transforms and Buchsbaum-Rim multiplicity. © 1997 Academic Press.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 24 条
[1]   AN IMPROVED BRIANCON-SKODA THEOREM WITH APPLICATIONS TO THE COHEN-MACAULAYNESS OF REES-ALGEBRAS [J].
ABERBACH, IM ;
HUNEKE, C .
MATHEMATISCHE ANNALEN, 1993, 297 (02) :343-369
[2]  
Bruns W., Cambridge Studies in Advanced Mathematics, V39
[3]  
Buchsbaum D.A., 1964, T AM MATH SOC, V111, P197, DOI DOI 10.2307/1994241
[4]   SOME STRUCTURE THEOREMS FOR FINITE FREE RESOLUTIONS [J].
BUCHSBAUM, DA ;
EISENBUD, D .
ADVANCES IN MATHEMATICS, 1974, 12 (01) :84-139
[5]  
BUCHSBAUM DA, 1973, J ALGEBRA, V25, P259, DOI 10.1016/0021-8693(73)90044-6
[6]  
Hochster M., 1990, J AM MATH SOC, V3, P31
[7]  
HOCHSTER M, CBMS, V24
[8]  
HUNEKE C, 1995, MICH MATH J, V42, P193
[9]  
Huneke C., 1989, MSRI PUBL, V15, P417
[10]  
KATZ D, IN PRESS T AM MATH S