Triboelectric Nanogenerator Based on Biowaste Tribopositive Delonix Regia Flowers Powder

被引:19
|
作者
Patil, Swapnil R. [1 ]
Chougale, Mahesh Y. [1 ]
Kim, Jungmin [1 ]
Shaukat, Rayyan Ali [1 ]
Noman, Muhammad [1 ]
Saqib, Qazi Muhammad [1 ]
Khan, Muhammad Umair [1 ,2 ]
Dongale, Tukaram D. [3 ]
Bae, Jinho [1 ]
机构
[1] Jeju Natl Univ, Dept Ocean Syst Engn, Jeju 63243, South Korea
[2] Khalifa Univ, Syst Chip Ctr, Dept Elect Engn & Comp Sci, Abu Dhabi 127788, U Arab Emirates
[3] Shivaji Univ, Sch Nanosci & Biotechnol, Computat Elect & Nanosci Res Lab, Kolhapur 416004, Maharashtra, India
基金
新加坡国家研究基金会;
关键词
Delonix regia flower powder; energy harvesting; nontoxic materials; sustainability; triboelectric nanogenerators; ENERGY; MEDICINE; PERFORMANCE;
D O I
10.1002/ente.202200876
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Sustainable energy harvesting technologies for maintaining the social ecosystem are predominantly addressing global challenges. Nowadays, non-toxic and low-cost energy-generating nature materials are getting great attention for the development of flexible triboelectric nanogenerators (TENGs). Herein, Delonix regia flowers (DRFs) derived biowaste-based tribopositive material are used to develop the high-performance triboelectric nanogenerator. DRFs have the presence of carbonyl, hydroxyl, and amino acids functional groups, which plays a key role to demonstrate the electron-donating ability of the DRFs. The proposed DRFs/PTFE device with a 20 cm(2) size and 6 mm separation distance exhibits a higher performance of voltage (655 V), current (59 mu A), and instantaneous power (220.2 mu W cm(-2)) under uniform external stress at 10 Hz frequency by air cylinder motor. It has also investigated the performance of the different device sizes and the spacing effect between triboelectric layers. The DRFs/PTFE-structured TENG exhibits excellent ability to lit up the 210 light emitting diodes and run up the low-power electronic stopwatch. According to the presented results, DRFs could be a superior candidate for triboelectric nanogenerator applications.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Expired Pharmaceutical Drugs as Tribopositive Material for Triboelectric Nanogenerator
    Chougale, Mahesh Y.
    Saqib, Qazi Muhammad
    Khan, Muhammad Umair
    Shaukat, Rayyan Ali
    Kim, Jungmin
    Dubal, Deepak
    Bae, Jinho
    ADVANCED SUSTAINABLE SYSTEMS, 2021, 5 (12):
  • [2] Terminalia Chebula Fruits Powder as Tribopositive Material for High-Performance Triboelectric Nanogenerator
    Ghode, Sourabh B.
    Patil, Omkar A.
    Chougale, Mahesh Y.
    Nerlekar, Nisha A.
    Patil, Swapnil R.
    Patil, Chandrashekhar S.
    Pandey Tiwari, Arpita
    Gaikwad, Pawan K.
    Kamat, Rajanish K.
    Dandge, Padma B.
    Bae, Jinho
    Dongale, Tukaram D.
    ENERGY TECHNOLOGY, 2024, 12 (05)
  • [3] Biowaste Peanut Shell Powder-Based Triboelectric Nanogenerator for Biomechanical Energy Scavenging and Sustainably Powering Electronic Supplies
    Saqib, Qazi Muhammad
    Shaukat, Rayyan Ali
    Khan, Muhammad Umair
    Chougale, Mahesh
    Bae, Jinho
    ACS APPLIED ELECTRONIC MATERIALS, 2020, 2 (12) : 3953 - 3963
  • [4] Biowaste Sea Shells-Based Triboelectric Nanogenerator: Sustainable Approach for Efficient Mechanical Energy Harvesting
    Vikram, Lakshmi Suneetha
    Potu, Supraja
    Kasireddi, A. K. Durga Prasad
    Khanapuram, Uday Kumar
    Divi, Haranath
    Rajaboina, Rakesh Kumar
    ENERGY TECHNOLOGY, 2024,
  • [5] Research Progress in Intelligent Exercise Monitoring Based on Triboelectric Nanogenerator
    Gao, Jing
    Jiang, Meiru
    Ba, Ning
    Mao, Yupeng
    JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2023, 18 (05) : 511 - 526
  • [6] Stretchable and biodegradable triboelectric nanogenerator based on elastomeric nanocomposites
    Kang, Heeseok
    Yang, Seung Min
    Ko, Gwan-Jin
    Ryu, Yelynn
    Lee, Joong Hoon
    Shin, Jeong-Woong
    Jang, Tae-Min
    Rajaram, Kaveti
    Han, Sungkeun
    Kim, Dong-Je
    Lim, Jun Hyeon
    Eom, Chan-Hwi
    Bandodkar, Amay J.
    Hwang, Suk-Won
    CHEMICAL ENGINEERING JOURNAL, 2023, 475
  • [7] Cellulose II Aerogel-Based Triboelectric Nanogenerator
    Zhang, Lei
    Liao, Yang
    Wang, Yi-Cheng
    Zhang, Steven
    Yang, Weiqing
    Pan, Xuejun
    Wang, Zhong Lin
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (28)
  • [8] Realizing the Capability of Negatively Charged Graphene Oxide in the Presence of Conducting Polyaniline for Performance Enhancement of Tribopositive Material of Triboelectric Nanogenerator
    Ahmad, Rafi U. Shan
    Haleem, Abdul
    Haider, Zeeshan
    Claver, Uzabakiriho Pierre
    Fareed, Azam
    Khan, Irfan
    Mbogba, Momoh Karmah
    Memon, Kashan
    Ali, Wajahat
    He, Weidong
    Hu, Peng
    Zhao, Gang
    ADVANCED ELECTRONIC MATERIALS, 2020, 6 (05)
  • [9] A triboelectric nanogenerator using silica-based powder for appropriate technology
    Kim, Inkyum
    Roh, Hyeonhee
    Yu, Jinsoo
    Jeon, Hyejin
    Kim, Daewon
    SENSORS AND ACTUATORS A-PHYSICAL, 2018, 280 : 85 - 91
  • [10] Triboelectric nanogenerator based on degradable materials
    Chao, Shengyu
    Ouyang, Han
    Jiang, Dongjie
    Fan, Yubo
    Li, Zhou
    ECOMAT, 2021, 3 (01)