A note on the sum of the two largest signless Laplacian eigenvalues

被引:0
|
作者
Zheng, Yirong [1 ,2 ]
机构
[1] Fuzhou Univ, Ctr Discrete Math, Fuzhou 350108, Peoples R China
[2] Xiamen Univ Technol, Sch Appl Math, Xiamen 361024, Peoples R China
关键词
Signless Laplacian eigenvalue; sum of signless Laplacian eigenvalue; triangle-free graph; CONJECTURE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a simple graph G of order n with m edges, Ashraf et al. in 2013 conjectured that S-k* (G) <= m ((k+1)(2)) for k = 1, 2,..., n, where S-k*(G) = Sigma(k)(i=1) q(i) and q(1) >= q(2) >= center dot center dot center dot >= q(n) are the signless Laplacian eigenvalues of G. They gave a proof for the conjecture when k = 2, but applied an incorrect key lemma. In this note, we will give a corresponding counterexample to the key lemma. Moreover, we also prove that the conjecture is true for all connected triangle-free graphs when k = 2.
引用
收藏
页码:183 / 191
页数:9
相关论文
共 23 条
  • [11] On the Laplacian and signless Laplacian polynomials of graphs with semiregular automorphisms
    Majid Arezoomand
    Journal of Algebraic Combinatorics, 2020, 52 : 21 - 32
  • [12] BOUNDS FOR SIGNLESS LAPLACIAN SPECTRAL RADIUS
    Nurkahli, Semiha Basdas
    Kabatas, Ulkunur
    Kizilca, Fatma
    JOURNAL OF SCIENCE AND ARTS, 2018, (03): : 631 - 644
  • [13] An Interlacing Property of the Signless Laplacian of Threshold Graphs
    Helmberg, Christoph
    Porto, Guilherme
    Torres, Guilherme
    Trevisan, Vilmar
    ELECTRONIC JOURNAL OF COMBINATORICS, 2025, 32 (01):
  • [14] Signless Laplacian eigenvalue problems of Nordhaus-Gaddum type
    Huang, Xueyi
    Lin, Huiqiu
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 581 : 336 - 353
  • [15] ESTIMATES OF THE GAPS BETWEEN CONSECUTIVE EIGENVALUES OF LAPLACIAN
    Chen, Daguang
    Zheng, Tao
    Yang, Hongcang
    PACIFIC JOURNAL OF MATHEMATICS, 2016, 282 (02) : 293 - 311
  • [16] ON BOUNDS FOR THE SMALLEST AND THE LARGEST EIGENVALUES OF GCD AND LCM MATRICES
    Altinisik, Ercan
    Buyukkose, Serife
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2016, 19 (01): : 117 - 125
  • [17] On integer matrices with integer eigenvalues and Laplacian integral graphs
    Barik, Sasmita
    Behera, Subhasish
    DISCRETE MATHEMATICS, 2024, 347 (01)
  • [19] Lower bounds for eigenvalues of Laplacian operator and the clamped plate problem
    Ji, Zhengchao
    Xu, Hongwei
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (06)
  • [20] Automated conjectures on upper bounds for the largest Laplacian eigenvalue of graphs
    Brankov, V
    Hansen, P
    Stevanovic, D
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 414 (2-3) : 407 - 424