In a near-production internal combustion engine, the effective fluorescence lifetime of toluene was determined by time-correlated single-photon counting with a minimally invasive fiber-optic spark-plug sensor. The lifetime measurement provided continuous crank-angle-resolved measurements of gas temperature. Proof-of-concept experiments in a motored four-cylinder spark-ignition engine were evaluated with a time resolution of 500 mu s, yielding temperature precision of 25 K (standard deviation) at top-dead center. In these experiments, 10% toluene was added to the nonfluorescent base fuel iso-octane. Fluorescence lifetimes were related to temperature via calibration measurements in a high temperature pressure vessel, with the data fitted to a functional dependence derived from a previously published phenomenological model. (C) 2012 Optical Society of America