Analysis and simulation of self-heating effects on RE LDMOS devices

被引:0
作者
Belaïd, MA [1 ]
Ketata, K [1 ]
Maanane, H [1 ]
Gares, M [1 ]
Mourgues, K [1 ]
Marcon, J [1 ]
机构
[1] Univ Rouen, IUT Rouen, LEMI, F-76821 Mont St Aignan, France
来源
SISPAD: 2005 International Conference on Simulation of Semiconductor Processes and Devices | 2005年
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a study of the temperature and self heating effects on RF LDMOS devices. A new electro-thermal model is implemented in Agilent's ADS, using a Symbolic Defined Device (SDD). The proposed model takes into account the thermal effects and the influence of temperature on the I-V and C-V characteristics, by providing three thermal resistances and three thermal capacitances, which represent the heat flow from the chip to the ambient air (thermal network). The new model is thoroughly assessed against extensive 2-D simulations performed using a numerical device model. The results indicate a good agreement with all operating conditions.
引用
收藏
页码:231 / 234
页数:4
相关论文
共 50 条
[21]   Self-Heating Assessment on Bulk FinFET Devices Through Characterization and Predictive Simulation [J].
Paliwoda, Peter ;
Manik, Prashanth P. ;
Singh, Dhruv ;
Chbili, Zakariae ;
Kerber, Andreas ;
Johnson, Jeffrey ;
Misra, Durgamadhab .
IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, 2018, 18 (02) :133-138
[22]   Simulation and measurement of the self-heating in GaNHFETs [J].
McAlister, S. P. .
PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 4, NO 5, 2007, 4 (05) :1653-1657
[23]   Analysis of self-heating effects in ultrathin-body SOI MOSFETs by device simulation [J].
Fiegna, Claudio ;
Yang, Yang ;
Sangiorgi, Enrico ;
O'Neill, Anthony G. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2008, 55 (01) :233-244
[24]   Modeling Self-Heating Effects in Nanometer SOI Devices at Cryogenic Temperatures [J].
Mendez-V, J. ;
Vasileska, D. ;
Raleva, K. ;
Gutierrez, E. A. .
2022 IEEE LATIN AMERICAN ELECTRON DEVICES CONFERENCE (LAEDC), 2022,
[25]   Self-Heating and Failure in Scalable Graphene Devices [J].
Beechem, Thomas E. ;
Shaffer, Ryan A. ;
Nogan, John ;
Ohta, Taisuke ;
Hamilton, Allister B. ;
McDonald, Anthony E. ;
Howell, Stephen W. .
SCIENTIFIC REPORTS, 2016, 6
[26]   Self-heating eeffects in SOINLDEMOS power devices [J].
Dieudonne, F. ;
Haendler, S. ;
Chouteau, S. ;
Rosa, J. ;
Waltz, P. ;
Perrotin, A. ;
Boissonnet, L. ;
Rauber, B. ;
Schaffnit, C. ;
Raynaud, C. .
2006 25TH INTERNATIONAL CONFERENCE ON MICROELECTRONICS, VOLS 1 AND 2, PROCEEDINGS, 2006, :201-+
[27]   Self-heating effect compensation in HBTs and its analysis and simulation [J].
Zhu, Y ;
Twynam, JK ;
Yagura, M ;
Hasegawa, M ;
Hasegawa, T ;
Eguchi, Y ;
Amano, Y ;
Suematsu, E .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2001, 48 (11) :2640-2646
[28]   Self-Heating and Failure in Scalable Graphene Devices [J].
Thomas E. Beechem ;
Ryan A. Shaffer ;
John Nogan ;
Taisuke Ohta ;
Allister B. Hamilton ;
Anthony E. McDonald ;
Stephen W. Howell .
Scientific Reports, 6
[29]   Reduction of self-heating effect on SOIM devices [J].
Roig, J ;
Flores, D ;
Vellvehi, M ;
Rebollo, J ;
Millan, J .
MICROELECTRONICS RELIABILITY, 2002, 42 (01) :61-66
[30]   Analysis and improvement of self-heating effect based on GaN HEMT devices [J].
Zuo, Zhipeng ;
Tang, Naiyun ;
Chen, Hui .
MATERIALS RESEARCH EXPRESS, 2022, 9 (07)