Biological agent detection based on principal component analysis

被引:0
|
作者
Mudigonda, Naga R. [1 ]
Kacelenga, Ray [1 ]
机构
[1] Gen Dynam Canada Ltd, 1020-68th Ave NE, Calgary, AB T2E 8P2, Canada
来源
CHEMICAL AND BIOLOGICAL SENSING VII | 2006年 / 6218卷
关键词
biological agent detection; laser induced fluorescence; principal component analysis;
D O I
10.1117/12.669522
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
This paper presents an algorithm, based on principal component analysis for the detection of biological threats using General Dynamics Canada's 4WARN Sentry 3000 biodetection system. The proposed method employs a statistical method for estimating background biological activity so as to make the algorithm adaptive to varying background situations. The method attempts to characterize the pattern of change that occurs in the fluorescent particle counts distribution and uses the information to suppress false-alarms. The performance of the method was evaluated using a total of 68 tests including 51 releases of Bacillus Globigii (BG), six releases of BG in the presence of obscurants, six releases of obscurants only, and five releases of ovalbumin at the Ambient Breeze Tunnel Test facility, Battelle, OH. The peak one-minute average concentration of BG used in the tests ranged from 10 - 65 Agent Containing Particles per Liter of Air (ACPLA). The obscurants used in the tests included diesel smoke, white grenade smoke, and salt solution. The method successfully detected BG at a sensitivity of 10 ACPLA and resulted in an overall probability of detection of 94% for BG without generating any false-alarms for obscurants at a detection threshold of 0.6 on a scale of 0 to 1. Also, the method successfully detected BG in the presence of diesel smoke and salt water fumes. The system successfully responded to all the five ovalbumin releases with noticeable trends in algorithm output and alarmed for two releases at the selected detection threshold.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] FAULT DETECTION AND ISOLATION WITH ROBUST PRINCIPAL COMPONENT ANALYSIS
    Tharrault, Yvon
    Mourot, Gilles
    Ragot, Jose
    Maquin, Didier
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2008, 18 (04) : 429 - 442
  • [22] Detection of minute chemical signals by principal component analysis
    Hasegawa, T
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2001, 20 (02) : 53 - 64
  • [23] PROVABLE DIMENSION DETECTION USING PRINCIPAL COMPONENT ANALYSIS
    Cheng, Siu-Wing
    Wang, Yajun
    Wu, Zhaungzhi
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2008, 18 (05) : 415 - 440
  • [24] Principal component-based anomaly detection scheme
    Shyu, ML
    Chen, SC
    Sarinnapakorn, K
    Chang, LW
    FOUNDATIONS AND NOVEL APPROACHES IN DATA MINING, 2006, 9 : 311 - +
  • [25] Radar Fall Detection Using Principal Component Analysis
    Jokanovic, Branka
    Amin, Moeness
    Ahmad, Fauzia
    Boashash, Boualem
    RADAR SENSOR TECHNOLOGY XX, 2016, 9829
  • [26] Automatic summarization based on principal component analysis
    Lee, CB
    Kim, MS
    Park, HR
    PROGRESS IN ARTIFICIAL INTELLIGENCE-B, 2003, 2902 : 409 - 413
  • [27] Principal component analysis based on graph embedding
    Ju, Fujiao
    Sun, Yanfeng
    Li, Jianqiang
    Zhang, Yaxiao
    Piao, Xinglin
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (05) : 7105 - 7116
  • [28] Principal component analysis based on graph embedding
    Fujiao Ju
    Yanfeng Sun
    Jianqiang Li
    Yaxiao Zhang
    Xinglin Piao
    Multimedia Tools and Applications, 2023, 82 : 7105 - 7116
  • [29] Robust Principal Component Analysis based on Purity
    Pan, Jinyan
    Cai, Yingqi
    Xie, Youwei
    Lin, Tingting
    Gao, Yunlong
    Cao, Chao
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 2017 - 2023
  • [30] Supplier Selection Based On the Principal Component Analysis
    Jiang, Haohao
    ADVANCES IN STRUCTURAL ENGINEERING, PTS 1-3, 2011, 94-96 : 2265 - 2269