(3+1)-dimensional integrable models possessing infinite dimensional virasoro-type symmetry algebra

被引:7
作者
Lin, J
机构
[1] Department of Physics, Zhejiang Normal University
关键词
D O I
10.1088/0253-6102/25/4/447
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using a series of concrete realizations of the centerless Virasoro-type symmetry algebra [sigma(f(2)(t), sigma(f(1)(t))] sigma(f(1)f(2) - f(2)f(1)), Various (3+1)-dimensional integrable equations under the condition that they possess Kac-Moody-Virasoro-type infinite dimensional symmetry algebra are obtained.
引用
收藏
页码:447 / 450
页数:4
相关论文
共 11 条
[1]  
[Anonymous], 1986, APPL LIE GROUP DIFFE, DOI DOI 10.1007/978-1-4684-0274-2
[2]   SYMMETRY REDUCTION FOR THE KADOMTSEV-PETVIASHVILI EQUATION USING A LOOP ALGEBRA [J].
DAVID, D ;
KAMRAN, N ;
LEVI, D ;
WINTERNITZ, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (05) :1225-1237
[3]   (2+1)-DIMENSIONAL MODELS WITH VIRASORO-TYPE SYMMETRY ALGEBRA [J].
LOU, SY ;
YU, J ;
LIN, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (06) :L191-L196
[4]   INFINITELY MANY SYMMETRIES OF THE DAVEY-STEWARTSON EQUATION [J].
LOU, SY ;
HU, XB .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (07) :L207-L212
[5]   (3+1)-DIMENSIONAL MODELS WITH AN INFINITELY DIMENSIONAL VIRASORO TYPE SYMMETRY ALGEBRA [J].
LOU, SY ;
LIN, J ;
YU, J .
PHYSICS LETTERS A, 1995, 201 (01) :47-52
[6]   GENERALIZED SYMMETRIES AND W-INFINITY ALGEBRAS IN 3-DIMENSIONAL TODA FIELD-THEORY [J].
LOU, SY .
PHYSICAL REVIEW LETTERS, 1993, 71 (25) :4099-4102
[7]   SYMMETRIES AND ALGEBRAS OF THE INTEGRABLE DISPERSIVE LONG-WAVE EQUATIONS IN (2+1)-DIMENSIONAL SPACES [J].
LOU, SY .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (09) :3235-3243
[8]   SYMMETRIES OF THE KADOMTSEV-PETVIASHVILI EQUATION [J].
LOU, SY .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (17) :4387-4394
[9]   SYMMETRY ALGEBRAS OF THE POTENTIAL NIZHNIK-NOVIKOV-VESELOV MODEL [J].
LOU, SY .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (04) :1755-1762
[10]   NONLINEAR EQUATIONS INVARIANT UNDER THE POINCARE, SIMILITUDE, AND CONFORMAL GROUPS IN 2-DIMENSIONAL SPACE-TIME [J].
RIDEAU, G ;
WINTERNITZ, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (05) :1095-1105