Convolution of Trace Class Operators over Locally Compact Quantum Groups

被引:6
作者
Hu, Zhiguo [1 ]
Neufang, Matthias [2 ,3 ]
Ruan, Zhong-Jin [4 ]
机构
[1] Univ Windsor, Dept Math & Stat, Windsor, ON N9B 3P4, Canada
[2] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
[3] Univ Lille 1 Sci & Technol, UFR Math, CNRS, Lab Math Paul Painleve,UMR 8524, F-59655 Villeneuve Dascq, France
[4] Univ Illinois, Dept Math, Urbana, IL 61801 USA
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2013年 / 65卷 / 05期
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
locally compact quantum groups and associated Banach algebras; BANACH-ALGEBRAS; REPRESENTATIONS; AMENABILITY; MULTIPLIERS; THEOREM;
D O I
10.4153/CJM-2012-030-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study locally compact quantum groups G through the convolution algebras L-1(G) and (T(L-2(G)), (sic)). We prove that the reduced quantum group C*-algebra C-0(G) can be recovered from the convolution (sic) by showing that the right T(L-2(G))-module < K(L-2(G)) (sic) T(L-2(G))> is equal to C-0(G). On the other hand, we show that the left T(L-2(G))-module < T(L-2(G)) (sic) K(L-2(G))> is isomorphic to the reduced crossed product C-0((G) over cap)(r) proportional to C-0(G), and hence is a much larger C*-subalgebra of B(L-2(G)). We establish a natural isomorphism between the completely bounded right multiplier algebras of L-1(C) and (T(L-2(G)), (sic)), and settle two invariance problems associated with the representation theorem of Junge-Neufang-Ruan (2009). We characterize regularity and discreteness of the quantum group Gin terms of continuity properties of the convolution (sic) on T(L-2(G)). We prove that if G is semi-regular, then the space < T(L-2(G)) (sic) B(L-2(G))> of right G-continuous operators on L-2(G), which was introduced by Bekka (1990) for L-infinity (G), is a unital C*-subalgebra of B(L-2(G)). In the representation framework formulated by Neufang-Ruan-Spronk (2008) and Junge-Neufang-Ruan, we show that the dual properties of compactness and discreteness can be characterized simultaneously via automatic normality of quantum group bimodule maps on B(L-2(G)). We also characterize some commutation relations of completely bounded multipliers of (T(L-2(G)), (sic)) over B(L-2(G)).
引用
收藏
页码:1043 / 1072
页数:30
相关论文
共 50 条
[31]   Duality, cohomology, and geometry of locally compact quantum groups [J].
Kalantar, Mehrdad ;
Neufang, Matthias .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 406 (01) :22-33
[32]   AMENABILITY AND COVARIANT INJECTIVITY OF LOCALLY COMPACT QUANTUM GROUPS [J].
Crann, Jason ;
Neufang, Matthias .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (01) :495-513
[33]   Idempotent States on Locally Compact Quantum Groups II [J].
Salmi, Pekka ;
Skalski, Adam .
QUARTERLY JOURNAL OF MATHEMATICS, 2017, 68 (02) :421-431
[34]   Amenable dynamical systems over locally compact groups [J].
Bearden, Alex ;
Crann, Jason .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2022, 42 (08) :2468-2508
[35]   BEKKA-TYPE AMENABILITIES FOR UNITARY COREPRESENTATIONS OF LOCALLY COMPACT QUANTUM GROUPS [J].
Chen, Xiao .
ANNALS OF FUNCTIONAL ANALYSIS, 2018, 9 (02) :210-219
[36]   Amenability and co-amenability for locally compact quantum groups [J].
Bédos, E ;
Tuset, L .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2003, 14 (08) :865-884
[37]   Arens irregularity of the trace class convolution algebra [J].
Hu, Zhiguo ;
Neufang, Matthias ;
Ruan, Zhong-Jin .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2013, 45 :351-362
[38]   REITER'S PROPERTIES FOR THE ACTIONS OF LOCALLY COMPACT QUANTUM GROUPS ON VON NEUMANN ALGEBRAS [J].
Ramezanpour, M. ;
Vishki, H. R. Ebrahimi .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2010, 36 (02) :1-17
[39]   Weak Amenability of Locally Compact Quantum Groups and Approximation Properties of Extended Quantum SU(1,1) [J].
Caspers, Martijn .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 331 (03) :1041-1069
[40]   Type I locally compact quantum groups: integral characters and coamenability [J].
Krajczok, Jacek .
DISSERTATIONES MATHEMATICAE, 2021, 561 :4-151