Graded cluster algebras

被引:13
作者
Grabowski, Jan E. [1 ]
机构
[1] Univ Lancaster, Dept Math & Stat, Lancaster LA1 4YF, England
关键词
Cluster algebra; Graded; Cluster category; Tropical frieze; GROTHENDIECK GROUP; CATEGORIES; MUTATION;
D O I
10.1007/s10801-015-0619-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the cluster algebra literature, the notion of a graded cluster algebra has been implicit since the origin of the subject. In this work, we wish to bring this aspect of cluster algebra theory to the foreground and promote its study. We transfer a definition of Gekhtman, Shapiro and Vainshtein to the algebraic setting, yielding the notion of a multi-graded cluster algebra. We then study gradings for finite-type cluster algebras without coefficients, giving a full classification. Translating the definition suitably again, we obtain a notion of multi-grading for (generalised) cluster categories. This setting allows us to prove additional properties of graded cluster algebras in a wider range of cases. We also obtain interesting combinatorics-namely tropical frieze patterns-on the Auslander-Reiten quivers of the categories.
引用
收藏
页码:1111 / 1134
页数:24
相关论文
共 22 条
  • [1] On a category of cluster algebras
    Assem, Ibrahim
    Dupont, Gregoire
    Schiffler, Ralf
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2014, 218 (03) : 553 - 582
  • [2] The Grothendieck group of a cluster category
    Barot, M.
    Kussin, D.
    Lenzing, H.
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2008, 212 (01) : 33 - 46
  • [3] Quantum cluster algebras
    Berenstein, A
    Zelevinsky, A
    [J]. ADVANCES IN MATHEMATICS, 2005, 195 (02) : 405 - 455
  • [4] Booker-Price T., 2014, COMMUNICATION
  • [5] Tilting theory and cluster combinatorics
    Buan, Aslak Bakke
    Marsh, Bethany Rose
    Reineke, Markus
    Reiten, Idun
    Todorov, Gordana
    [J]. ADVANCES IN MATHEMATICS, 2006, 204 (02) : 572 - 618
  • [6] Cluster structures from 2-Calabi-Yau categories with loops
    Buan, Aslak Bakke
    Marsh, Robert J.
    Vatne, Dagfinn F.
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2010, 265 (04) : 951 - 970
  • [7] Cluster algebras as Hall algebras of quiver representations
    Caldero, Philippe
    Chapoton, Frederic
    [J]. COMMENTARII MATHEMATICI HELVETICI, 2006, 81 (03) : 595 - 616
  • [8] CONWAY JH, 1973, MATH GAZ, V57, P87, DOI 10.2307/3615344
  • [9] COXETER HSM, 1971, ACTA ARITH, V18, P297
  • [10] A Caldero-Chapoton formula for generalized cluster categories
    Dominguez, Salomon
    Geiss, Christof
    [J]. JOURNAL OF ALGEBRA, 2014, 399 : 887 - 893