Existence and multiplicity of solutions for a p(x)-Kirchhoff type equation

被引:9
作者
Afrouzi, G. A. [1 ]
Mirzapour, M. [2 ]
Chung, N. T. [3 ]
机构
[1] Univ Mazandaran, Fac Math Sci, Dept Math, Babol Sar, Iran
[2] Farhangian Univ, Fac Math Sci, Dept Math, Tehran, Iran
[3] Quang Binh Univ, Dept Sci Management & Int Cooperat, 312 Ly Thuong Kiet, Dong Hoi, Quang Binh, Vietnam
来源
RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA | 2016年 / 136卷
关键词
Kirchhoff type problems; p(x)-Kirchhoff type; boundary value problem; mountain pass theorem; dual fountain theorem; ELLIPTIC EQUATION; KIRCHHOFF-TYPE;
D O I
10.4171/RSMUP/136-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the existence and multiplicity to p(x)-Kirchhoff type problem of the following form { -M (integral(Omega) 1/p(x) vertical bar del u vertical bar(p(x)) dx)div(vertical bar del u vertical bar(p(x)-2)del u) = f(x, u) in Omega, u = 0 on partial derivative Omega. By means of a direct variational approach and the theory of the variable exponent Sobolev spaces, we establish conditions ensuring the existence and multiplicity of solutions for the problem.
引用
收藏
页码:95 / 109
页数:15
相关论文
共 26 条
[1]  
Afrouzi G. A., 2015, CASP J MATH SCI, V4, P17
[2]  
Afrouzi GA, 2013, ELECTRON J DIFFER EQ
[3]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[4]  
[Anonymous], 2006, Rend. Semin. Mat. Univ. Politec. Torino
[5]  
[Anonymous], 1883, Mechanik
[6]  
[Anonymous], 1997, Minimax theorems
[7]  
[Anonymous], 2007, Hokkaido Math J
[8]   On the well-posedness of the Kirchhoff string [J].
Arosio, A ;
Panizzi, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (01) :305-330
[9]  
Cavalcanti MM., 2001, Adv. Differential Equations, V6, P701
[10]   Variable exponent, linear growth functionals in image restoration [J].
Chen, Yunmei ;
Levine, Stacey ;
Rao, Murali .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) :1383-1406