New results on common properties of bounded linear operators RS and SR

被引:15
作者
Zeng, Qing Ping [1 ]
Zhong, Huai Jie [1 ]
机构
[1] Fujian Normal Univ, Sch Math & Comp Sci, Fuzhou 350007, Peoples R China
基金
中国国家自然科学基金;
关键词
Regularity; spectrum; extension; aluthge transform; P-HYPONORMAL OPERATORS; FREDHOLM OPERATORS; AXIOMATIC THEORY; DESCENT; ASCENT; SPECTRUM;
D O I
10.1007/s10114-013-1758-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X, Y be Banach spaces, R: X -> Y and S: Y -> X be bounded linear operators. When lambda not equal 0, we investigate common properties of lambda I - SR and lambda I - RS. This work should be viewed as a continuation of researches of Barnes and Lin et al.. We also apply these results obtained to B-Fredholm theory, extensions and Aluthge transforms.
引用
收藏
页码:1871 / 1884
页数:14
相关论文
共 25 条
[1]   On the Dunford Property (C) for Bounded Linear Operators RS and SR [J].
Aiena, Pietro ;
Gonzalez, Manuel .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2011, 70 (04) :561-568
[3]   Common operator properties of the linear operators RS and SR [J].
Barnes, BA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (04) :1055-1061
[4]   Local spectral theory of linear operators RS and SR [J].
Benhida, C ;
Zerouali, EH .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2006, 54 (01) :1-8
[5]   Restriction of an operator to the range of its powers [J].
Berkani, M .
STUDIA MATHEMATICA, 2000, 140 (02) :163-175
[6]  
Berkani M, 2001, GLASGOW MATH J, V43, P457
[7]   An Atkinson-type theorem for B-Fredhohn operators [J].
Berkani, M ;
Sarih, M .
STUDIA MATHEMATICA, 2001, 148 (03) :251-257
[8]  
Berkani M, 2003, ACTA SCIENTIARUM MAT, V69, P379
[9]   UNIFORM ASCENT AND DESCENT OF BOUNDED OPERATORS [J].
GRABINER, S .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1982, 34 (02) :317-337
[10]  
Grabiner S, 2002, J OPERAT THEOR, V48, P69