Microbial diversity and potential for arsenic and iron biogeochemical cycling at an arsenic rich, shallow-sea hydrothermal vent (Tutum Bay, Papua New Guinea)

被引:44
|
作者
Meyer-Dombard, D'Arcy R. [1 ]
Amend, Jan P. [2 ,3 ]
Osburn, Magdalena R. [4 ]
机构
[1] Univ Illinois, Dept Earth & Environm Sci, Chicago, IL 60607 USA
[2] Univ So Calif, Dept Earth Sci, Los Angeles, CA 90089 USA
[3] Univ So Calif, Dept Biol Sci, Los Angeles, CA 90089 USA
[4] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
Arsenic biogeochemistry; Iron biogeochemistly; Shallow-sea hydrothermal vents; Biofilms; YELLOWSTONE-NATIONAL-PARK; CORAL-REEF ECOSYSTEM; AMBITLE ISLAND; VULCANO ISLAND; ARCHAEAL DIVERSITY; OXIDIZING BACTERIA; LOIHI SEAMOUNT; DEEP-SEA; SYSTEM; COMMUNITIES;
D O I
10.1016/j.chemgeo.2012.02.024
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The shallow submarine hydrothermal systems of Tutum Bay, Papua New Guinea, are an ideal opportunity to study the influence of arsenic on a marine ecosystem. Previous reports have demonstrated that the hydrothermal vents in Tutum Bay release arsenic in reduced hydrothermal fluids into the marine environment at the rate of 1.5 kg of arsenic/day. Aqueous arsenite is oxidized and adsorbed onto hydrous ferric oxides [HFOs] surrounding the venting area. We demonstrate here that microorganisms are key in both the oxidation of Fe-II and As-III in the areas immediately surrounding the vent source. Surveys of community diversity in biofilms and in vent fluid indicate the presence of zeta-Proteobacteria, alpha-Proteobacteria, Persephonella, and close relatives of the archaeon Nitrosocaldus. The iron oxidizing zeta-Proteobacteria are among the first colonizers of solid substrates near the vents, where they appear to be involved in the precipitation of the hydrous ferric oxides (HFOs). Further, the biofilm communities possess the genetic capacity for the oxidation of arsenite. The resulting arsenate is adsorbed onto the HFOs, potentially removing the arsenic from the immediate marine system. No evidence was found for dissimilatory arsenate reduction, but the arsenate may be remobilized by detoxification mechanisms. This is the first demonstration of the genetic capacity for arsenic cycling in high temperature, shallow-sea vent communities, supporting recent culture-based findings in similar systems in Greece (Handley et al., 2010). These reports extend the deep-sea habitat of the zeta-Proteobacteria to shallow submarine hydrothermal systems, and together implicate biological oxidation of both iron and arsenite as primary biogeochemical processes in these systems, providing a mechanism for the partial removal of aqueous arsenic from the marine environment surrounding the vents. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:37 / 47
页数:11
相关论文
共 12 条
  • [1] Chemolithotrophic energy and Archaeal communities in arsenic-rich, shallow-sea hydrothermal sediments of Papua New Guinea
    Akerman, N. H.
    Amend, J. P.
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2008, 72 (12) : A12 - A12
  • [2] Prokaryotic Populations in Arsenic-Rich Shallow-Sea Hydrothermal Sediments of Ambitle Island, Papua New Guinea
    Meyer-Dombard, D. R.
    Price, R. E.
    Pichler, T.
    Amend, J. P.
    GEOMICROBIOLOGY JOURNAL, 2012, 29 (01) : 1 - 17
  • [3] Energy sources for chemolithotrophs in an arsenic- and iron-rich shallow-sea hydrothermal system
    Akerman, N. H.
    Price, R. E.
    Pichler, T.
    Amend, J. P.
    GEOBIOLOGY, 2011, 9 (05) : 436 - 445
  • [4] Microbial Diversity at a Hot, Shallow-Sea Hydrothermal Vent in the Southern Tyrrhenian Sea (Italy)
    Maugeri, Teresa L.
    Lentini, Valeria
    Gugliandolo, Concetta
    Cousin, Sylvie
    Stackebrandt, Erko
    GEOMICROBIOLOGY JOURNAL, 2010, 27 (05) : 380 - 390
  • [5] Archaeal and bacterial diversity in an arsenic-rich shallow-sea hydrothermal system undergoing phase separation
    Price, Roy E.
    Lesniewski, Ryan
    Nitzsche, Katja S.
    Meyerdierks, Anke
    Saltikov, Chad
    Pichler, Thomas
    Amend, Jan P.
    FRONTIERS IN MICROBIOLOGY, 2013, 4
  • [6] Archaea and bacteria in an arsenicrich shallow-sea hydrothermal system, Papua New Guinea
    Amend, J. P.
    Meyer-Dombard, D. R.
    Akerman, N. H.
    Osburn, M. R.
    Herndon, E. M.
    Garey, J. R.
    Rubelman, H.
    Wu, T.
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2007, 71 (15) : A21 - A21
  • [7] Arsenic bioaccumulation and biotransformation in deep-sea hydrothermal vent organisms from the PACMANUS hydrothermal field, Manus Basin, Papua New Guinea
    Price, Roy E.
    Breuer, Christian
    Reeves, Eoghan
    Bach, Wolfgang
    Pichler, Thomas
    DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS, 2016, 117 : 95 - 106
  • [8] The chemical composition of shallow-water hydrothermal fluids in Tutum Bay, Ambitle Island, Papua New Guinea and their effect on ambient seawater
    Pichler, T
    Veizer, J
    Hall, GEM
    MARINE CHEMISTRY, 1999, 64 (03) : 229 - 252
  • [9] The precipitation of aragonite from shallow-water hydrothermal fluids in a coral reef, Tutum Bay, Ambitle Island, Papua New Guinea
    Pichler, T
    Veizer, J
    CHEMICAL GEOLOGY, 2004, 207 (1-2) : 31 - 45
  • [10] Life on the edge: Microbial biomineralization in an arsenic- and lead-rich deep-sea hydrothermal vent
    Hu, Si-Yu
    Barnes, Stephen J.
    Pages, Anais
    Parr, Joanna
    Binns, Ray
    Verrall, Michael
    Quadir, Zakaria
    Rickard, William D. A.
    Liu, Weihua
    Fougerouse, Denis
    Grice, Kliti
    Schoneveld, Louise
    Ryan, Chris
    Paterson, David
    CHEMICAL GEOLOGY, 2020, 533