Critical behavior of the PT-symmetric iφ3 quantum field theory

被引:27
作者
Bender, Carl M. [1 ]
Branchina, V. [2 ,3 ]
Messina, Emanuele [2 ,3 ]
机构
[1] Washington Univ, Dept Phys, St Louis, MO 63130 USA
[2] Univ Catania, Dept Phys, I-95123 Catania, Italy
[3] INFN, Sez Catania, I-95123 Catania, Italy
来源
PHYSICAL REVIEW D | 2013年 / 87卷 / 08期
关键词
LEE EDGE SINGULARITY; PERTURBATION-THEORY; MECHANICS; SPECTRA;
D O I
10.1103/PhysRevD.87.085029
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
It was shown recently that a PT-symmetric i phi(3) quantum field theory in 6 - epsilon dimensions possesses a nontrivial fixed point. The critical behavior of this theory around the fixed point is examined and it is shown that the corresponding phase transition is related to the existence of a nontrivial solution of the gap equation. The theory is studied first in the mean-field approximation and the critical exponents are calculated. Then, it is examined beyond the mean-field approximation by using renormalization-group techniques, and the critical exponents for 6 - epsilon dimensions are calculated to order epsilon. It is shown that because of its stability the PT-symmetric i phi(3) theory has a higher predictive power than the conventional phi(3) theory. A comparison of the i phi(3) model with the Lee-Yang model is given. DOI: 10.1103/PhysRevD.87.085029
引用
收藏
页数:5
相关论文
共 17 条
[1]   Making sense of non-Hermitian Hamiltonians [J].
Bender, Carl M. .
REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (06) :947-1018
[2]   Ordinary versus PT-symmetric φ3 quantum field theory [J].
Bender, Carl M. ;
Branchina, Vincenzo ;
Messina, Emanuele .
PHYSICAL REVIEW D, 2012, 85 (08)
[3]   The C operator in PT-symmetric quantum field theory transforms as a Lorentz scalar -: art. no. 065010 [J].
Bender, CM ;
Brandt, SF ;
Chen, JH ;
Wang, QH .
PHYSICAL REVIEW D, 2005, 71 (06) :1-7
[4]   Scalar quantum field theory with a complex cubic interaction [J].
Bender, CM ;
Brody, DC ;
Jones, HF .
PHYSICAL REVIEW LETTERS, 2004, 93 (25) :251601-1
[5]   Extension of PT-symmetric quantum mechanics to quantum field theory with cubic interaction -: art. no. 025001 [J].
Bender, CM ;
Brody, DC ;
Jones, HF .
PHYSICAL REVIEW D, 2004, 70 (02) :025001-1
[6]   Large-order perturbation theory for a non-Hermitian PT-symmetric Hamiltonian [J].
Bender, CM ;
Dunne, GV .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (10) :4616-4621
[7]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[8]   PT-symmetric quantum mechanics [J].
Bender, CM ;
Boettcher, S ;
Meisinger, PN .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (05) :2201-2229
[9]  
BENDER CM, 1978, ADV MATH METHODS SCI, pCH6
[10]   CRITICAL EXPONENTS FOR REGGEON QUANTUM SPIN MODEL [J].
BROWER, RC ;
FURMAN, MA ;
MOSHE, M .
PHYSICS LETTERS B, 1978, 76 (02) :213-219