Derivation of the Fermi function in perturbative quantum field theory

被引:1
|
作者
Matsuzaki, Akihiro [1 ]
Tanaka, Hidekazu [2 ]
机构
[1] Shibaura Inst Technol, Ctr Educ Assistance, Minuma Ku, Saitama 3378570, Japan
[2] Rikkyo Univ, Dept Phys, Toshima Ku, Tokyo 171, Japan
来源
PHYSICAL REVIEW C | 2012年 / 86卷 / 06期
关键词
RADIATIVE-CORRECTIONS; BETA-DECAY;
D O I
10.1103/PhysRevC.86.065502
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We postulate that the Fermi function should be derived from the amplitude, not from the solution of the Dirac equation, in quantum field theory. Then, we obtain the following results:(1) We give the amplitude and width of the neutron beta decay, n -> p + e(-) + (nu) over bar (e), to the first order in alpha. We evaluate it using Feynman parameters.(2) As the result, we confirm the terms, which can be interpreted as the Fermi function expanded to order alpha.(3) We give the same result using the contour integral.(4) We check that there are no such terms in a similar process, (nu) over bar (e) + p -> e(+) + n. (5) We perform the Fermi function expanded to the second order in alpha using contour integral. (6) The conventional Fermi function affects the convergence of perturbation theory. DOI: 10.1103/PhysRevC.86.065502
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Perturbative quantum field theory
    Sterman, G
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2001, 16 (18): : 3041 - 3065
  • [2] Perturbative quantum field theory
    Sterman, G
    CHALLENGES FOR THE 21ST CENTURY, 2000, : 479 - 508
  • [3] Combinatorics of (perturbative) quantum field theory
    Kreimer, D
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 363 (4-6): : 387 - 424
  • [4] Geometries in perturbative quantum field theory
    Schnetz, Oliver
    COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2021, 15 (04) : 743 - 791
  • [5] On perturbative quantum field theory with boundary
    Bajnok, Z
    Böhm, G
    Takács, G
    NUCLEAR PHYSICS B, 2004, 682 (03) : 585 - 617
  • [6] Field Theory of the Fermi Function
    Hill, Richard J.
    Plestid, Ryan
    PHYSICAL REVIEW LETTERS, 2024, 133 (02)
  • [7] NON-PERTURBATIVE QUANTUM FIELD THEORY
    BARRY M. MCCOY
    吴大峻
    Science China Mathematics, 1979, (09) : 1021 - 1032
  • [8] The Real Problem with Perturbative Quantum Field Theory
    Fraser, James D.
    BRITISH JOURNAL FOR THE PHILOSOPHY OF SCIENCE, 2020, 71 (02): : 391 - 413
  • [9] Star products and perturbative quantum field theory
    Hirschfeld, AC
    Henselder, P
    ANNALS OF PHYSICS, 2002, 298 (02) : 382 - 393
  • [10] Infrared problem in perturbative quantum field theory
    Duch, Pawel
    REVIEWS IN MATHEMATICAL PHYSICS, 2021, 33 (10)