Weighted Hardy modular inequalities in variable Lp spaces for decreasing functions

被引:20
作者
Boza, Santiago [1 ]
Soria, Javier [2 ]
机构
[1] Univ Politecn Cataluna, Dept Appl Math 4, EPSEVG, E-08880 Vilanova I La Geltru, Spain
[2] Univ Barcelona, Dept Appl Math & Anal, E-08007 Barcelona, Spain
关键词
modular inequalities; hardy operator; B-p weights; variable L-p spaces; monotone functions;
D O I
10.1016/j.jmaa.2008.07.046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study weighted modular inequalities with variable exponents for the Hardy operator restricted to non-increasing functions. We show that the exponents p(.) for which these modular inequalities hold must have a constant oscillation at zero, which implies that these exponents are either constant or extremely oscillating near the origin. Similarly to the constant case, we introduce the class of weights B-p(.), and prove some of the classical properties in this context. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:383 / 388
页数:6
相关论文
共 12 条
[11]  
NEUGEBAUER CJ, 1991, PUBL MAT, V35, P429, DOI [DOI 10.5565/PUBLMAT_, DOI 10.5565/PUBLMAT_35291_07, 10.5565/PUBLMAT_35291_07]
[12]  
Sinnamon G., 2000, FUNCTION SPACES APPL, P255