Bulk Cu-NbC nanocomposites with high strength and high electrical conductivity

被引:81
作者
Zeng, Wei [1 ,4 ]
Xie, Jingwen [1 ]
Zhou, Dengshan [2 ,3 ]
Fu, Zhiqiang [4 ]
Zhang, Deliang [1 ,2 ,3 ]
Lavernia, Enrique J. [4 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China
[2] Northeastern Univ, Sch Mat Sci & Engn, Key Lab Anisotropy & Texture Mat, Minist Educ, Shenyang 110819, Liaoning, Peoples R China
[3] Northeastern Univ, Sch Mat Sci & Engn, Inst Ceram & Powder Met, Shenyang 110819, Liaoning, Peoples R China
[4] Univ Calif Irvine, Dept Chem Engn & Mat Sci, Irvine, CA 92607 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Cu alloys; Nanocrystalline metal; Mechanical properties; Electrical conductivity; INDUCED GRAIN-GROWTH; CR-ZR ALLOYS; PLASTIC-DEFORMATION; NANOCRYSTALLINE CU; COPPER; COMPOSITE; STRESS; METALS; RESISTIVITY; BOUNDARIES;
D O I
10.1016/j.jallcom.2018.02.215
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report on a study aimed at simultaneously achieving high strength, high electrical conductivity and high thermal stability in bulk nanocrystalline (NC) Cu-NbC nanocomposites. We describe an approach that involves adding NbC nanoparticles (similar to 7 nm) into a nanocrystalline Cu matrix (similar to 96 nm) via in-situ formation during sintering of high energy mechanically milled powder into a compact. Our results show that the presence of thermally stable NbC nanoparticles in the bulk NC Cu-NbC nanocomposite contributes to a high tensile strength (868 MPa) in combination with a thermally stable nanocrystalline Cu matrix, and a high electrical conductivity of similar to 56% IACS (International Annealed Copper Standard). (c) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:55 / 62
页数:8
相关论文
共 45 条
[11]   High temperature stabilization of nanocrystalline grain size: Thermodynamic versus kinetic strategies [J].
Koch, Carl C. ;
Scattergood, Ronald O. ;
Saber, Mostafa ;
Kotan, Hasan .
JOURNAL OF MATERIALS RESEARCH, 2013, 28 (13) :1785-1791
[12]   Optimization of strength and ductility in nanocrystalline and ultrafine grained metals [J].
Koch, CC .
SCRIPTA MATERIALIA, 2003, 49 (07) :657-662
[13]  
LI R, 2016, SCI REP, V6
[14]   An analytical model for stress-induced grain growth in the presence of both second-phase particles and solute segregation at grain boundaries [J].
Lin, Yaojun ;
Wen, Haiming ;
Li, Ying ;
Wen, Bin ;
Liu, Wei ;
Lavernia, Enrique J. .
ACTA MATERIALIA, 2015, 82 :304-315
[15]   Stress-Induced Grain Growth in an Ultra-Fine Grained Al Alloy [J].
Lin, Yaojun ;
Wen, Haiming ;
Li, Ying ;
Wen, Bin ;
Liu, Wei ;
Lavernia, Enrique J. .
METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 2014, 45 (03) :795-810
[16]   Effect of processing and heat treatment on behavior of Cu-Cr-Zr alloys to railway contact wire [J].
Liu, Qiang ;
Zhang, Xiang ;
Ge, Yan ;
Wang, Jing ;
Cui, Jian-Zhong .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2006, 37A (11) :3233-3238
[17]   The solubility of C in solid Cu [J].
López, GA ;
Mittemeijer, E .
SCRIPTA MATERIALIA, 2004, 51 (01) :1-5
[18]   Precipitation strengthened high strength-conductivity copper alloys containing ZrC ceramics [J].
Lopez, M. ;
Jimenez, J. A. ;
Corredor, D. .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2007, 38 (02) :272-279
[19]   Performance and characterization of dispersion strengthened Cu-TiB2 composite for electrical use [J].
López, M ;
Corredor, D ;
Camurri, C ;
Vergara, V ;
Jiménez, J .
MATERIALS CHARACTERIZATION, 2005, 55 (4-5) :252-262
[20]   Study on high-strength and high-conductivity Cu-Fe-P alloys [J].
Lu, DP ;
Wang, J ;
Zeng, WJ ;
Liu, Y ;
Lu, L ;
Sun, BD .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2006, 421 (1-2) :254-259