Bulk Cu-NbC nanocomposites with high strength and high electrical conductivity

被引:81
作者
Zeng, Wei [1 ,4 ]
Xie, Jingwen [1 ]
Zhou, Dengshan [2 ,3 ]
Fu, Zhiqiang [4 ]
Zhang, Deliang [1 ,2 ,3 ]
Lavernia, Enrique J. [4 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China
[2] Northeastern Univ, Sch Mat Sci & Engn, Key Lab Anisotropy & Texture Mat, Minist Educ, Shenyang 110819, Liaoning, Peoples R China
[3] Northeastern Univ, Sch Mat Sci & Engn, Inst Ceram & Powder Met, Shenyang 110819, Liaoning, Peoples R China
[4] Univ Calif Irvine, Dept Chem Engn & Mat Sci, Irvine, CA 92607 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Cu alloys; Nanocrystalline metal; Mechanical properties; Electrical conductivity; INDUCED GRAIN-GROWTH; CR-ZR ALLOYS; PLASTIC-DEFORMATION; NANOCRYSTALLINE CU; COPPER; COMPOSITE; STRESS; METALS; RESISTIVITY; BOUNDARIES;
D O I
10.1016/j.jallcom.2018.02.215
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report on a study aimed at simultaneously achieving high strength, high electrical conductivity and high thermal stability in bulk nanocrystalline (NC) Cu-NbC nanocomposites. We describe an approach that involves adding NbC nanoparticles (similar to 7 nm) into a nanocrystalline Cu matrix (similar to 96 nm) via in-situ formation during sintering of high energy mechanically milled powder into a compact. Our results show that the presence of thermally stable NbC nanoparticles in the bulk NC Cu-NbC nanocomposite contributes to a high tensile strength (868 MPa) in combination with a thermally stable nanocrystalline Cu matrix, and a high electrical conductivity of similar to 56% IACS (International Annealed Copper Standard). (c) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:55 / 62
页数:8
相关论文
共 45 条
[1]   ELECTRICAL RESISTIVITY OF DISLOCATIONS [J].
BASINSKI, ZS ;
DUGDALE, JS ;
HOWIE, A .
PHILOSOPHICAL MAGAZINE, 1963, 8 (96) :1989-&
[2]   STRUCTURE-ANALYSIS OF DISPERSION STRENGTHENING [J].
BESTERCI, M .
SCRIPTA METALLURGICA ET MATERIALIA, 1994, 30 (09) :1145-1149
[3]  
Chakrabarti D, 1984, Bulletin of Alloy Phase Diagrams, V5, P59, DOI 10.1007/BF02868727
[4]  
Chakrabarti D.J., 1982, J PHASE EQUILIB, V2, P455, DOI 10.1007/BF02876162
[5]   Electrical resistivity of ultrafine-grained copper with nanoscale growth twins [J].
Chen, X. H. ;
Lu, L. ;
Lu, K. .
JOURNAL OF APPLIED PHYSICS, 2007, 102 (08)
[6]  
Cullity BD., 1957, AM J PHYS, V25, P394, DOI [DOI 10.1119/1.1934486, 10.1119/1.1934486]
[7]  
Fogagnolo JB, 2003, J MATER PROCESS TECH, V143, P792, DOI 10.1016/s0924-0136(03)00380-7
[8]   The systems-based design of high-strength, high-conductivity alloys [J].
Ghosh, G ;
Miyake, J ;
Fine, ME .
JOM-JOURNAL OF THE MINERALS METALS & MATERIALS SOCIETY, 1997, 49 (03) :56-60
[9]   THE DEFORMATION AND AGEING OF MILD STEEL .3. DISCUSSION OF RESULTS [J].
HALL, EO .
PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON SECTION B, 1951, 64 (381) :747-753
[10]   THE STRAIN AND GRAIN-SIZE DEPENDENCE OF THE FLOW-STRESS OF COPPER [J].
HANSEN, N ;
RALPH, B .
ACTA METALLURGICA, 1982, 30 (02) :411-417