Second-order consensus seeking in directed networks of multi-agent dynamical systems via generalized linear local interaction protocols

被引:52
作者
Li, Huaqing [1 ]
Liao, Xiaofeng [1 ]
Dong, Tao [1 ]
Xiao, Li [1 ,2 ]
机构
[1] Chongqing Univ, Coll Comp Sci, State Key Lab Power Transmiss Equipment & Syst Se, Chongqing 400044, Peoples R China
[2] Chongqing Educ Coll, Dept Comp Sci, Chongqing 400067, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-agent systems; Second-order consensus; Directed topology; Directed spanning tree; Double-integrator dynamics; AGENTS; ALGORITHMS;
D O I
10.1007/s11071-012-0611-z
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper focuses on the analytical study of final consensus convergence state of multi-agent dynamical systems by using a kind of generalized linear local interaction protocols. All the agents in the fixed directed network topology are governed by double-integrator dynamics. Almost all the existing linear local interaction consensus protocols can be considered as special cases of the present paper. By combining the algebraic graph theory and the matrix theory, some necessary and sufficient conditions are derived for reaching the second-order consensus. Moreover, the finial consensus convergence states of all agents are also be analytically determined. According to the obtained results, it is found that both the linear gains and the eigenvalues of the Laplacian matrix associated with the directed network topology play key roles in reaching consensus. Finally, the effectiveness and correctness of our theoretical findings are demonstrated by some numerical examples.
引用
收藏
页码:2213 / 2226
页数:14
相关论文
共 35 条
[1]   Synchronized state of coupled dynamics on time-varying networks [J].
Amritkar, RE ;
Hu, CK .
CHAOS, 2006, 16 (01)
[2]   UAV formation control: Theory and application [J].
Anderson, Brian D. O. ;
Fidan, Bariş ;
Yu, Changbin ;
Van Der Walle, Dirk .
Lecture Notes in Control and Information Sciences, 2008, 371 :15-33
[3]   A vision-based formation control framework [J].
Das, AK ;
Fierro, R ;
Kumar, V ;
Ostrowski, JP ;
Spletzer, J ;
Taylor, CJ .
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 2002, 18 (05) :813-825
[4]   Decentralized coordination of autonomous swarms inspired by chaotic behavior of ants [J].
Ge, Fangzhen ;
Wei, Zhen ;
Lu, Yang ;
Tian, Yiming ;
Li, Lixiang .
NONLINEAR DYNAMICS, 2012, 70 (01) :571-584
[5]  
Godsil C., 2001, Algebraic graph theory
[6]   Distributed observers design for leader-following control of multi-agent networks [J].
Hong, Yiguang ;
Chen, Guanrong ;
Bushnell, Linda .
AUTOMATICA, 2008, 44 (03) :846-850
[7]   Leader-foll owing coordination of multi-agent systems with coupling time delays [J].
Hu, Jiangping ;
Hong, Yiguang .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 374 (02) :853-863
[8]   Consensus of second-order discrete-time multi-agent systems with nonuniform time-delays and dynamically changing topologies [J].
Lin, Peng ;
Jia, Yingmin .
AUTOMATICA, 2009, 45 (09) :2154-2158
[9]  
Lu J., 2006, PHYS REV E, V80
[10]   Pinning Stabilization of Linearly Coupled Stochastic Neural Networks via Minimum Number of Controllers [J].
Lu, Jianquan ;
Ho, Daniel W. C. ;
Wang, Zidong .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2009, 20 (10) :1617-1629