Uncertainty in performance for linear and nonlinear energy harvesting strategies

被引:70
作者
Mann, Brian P. [1 ]
Barton, David A. W. [2 ]
Owens, Benjamin A. M. [1 ]
机构
[1] Duke Univ, Dept Mech Engn & Mat Sci, Durham, NC 27708 USA
[2] Univ Bristol, Dept Engn Math, Bristol, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
energy harvesting; piezoelectric; sensor; BAND-PASS FILTERS; VIBRATION; GENERATOR;
D O I
10.1177/1045389X12439639
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Vibrational energy harvesters are often linear mass-spring-damper-type devices, which have their resonant frequency tuned to the dominant vibration frequency of their host environment. As such, they can be highly sensitive to uncertainties, which may arise from the imprecise characterization of the host environment or, alternatively, from manufacturing defects and tolerances. It has previously been claimed that the use of nonlinear energy harvesters may be one way to alleviate the problems of these uncertainties. This article presents a systematic uncertainty propagation study of a prototypical electromagnetic energy harvester. More specifically, the response of a linear harvester in the presence of parametric uncertainty is compared to the response of harvesters containing some common forms of nonlinearity, that is, hardening, softening, or bistability. Analytical solutions are used in combination with presumed levels of parametric uncertainty to quantify the resulting uncertainty in the power output. Consequently, these studies can determine the regions in the parameter space where a nonlinear strategy may outperform a more traditional linear approach.
引用
收藏
页码:1451 / 1460
页数:10
相关论文
共 31 条
[1]   Piezoelectric energy harvesting with parametric uncertainty [J].
Ali, S. F. ;
Friswell, M. I. ;
Adhikari, S. .
SMART MATERIALS & STRUCTURES, 2010, 19 (10)
[2]   Energy Harvesting From Vibrations With a Nonlinear Oscillator [J].
Barton, David A. W. ;
Burrow, Stephen G. ;
Clare, Lindsay R. .
JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2010, 132 (02) :0210091-0210097
[3]   A micro electromagnetic generator for vibration energy harvesting [J].
Beeby, S. P. ;
Torah, R. N. ;
Tudor, M. J. ;
Glynne-Jones, P. ;
O'Donnell, T. ;
Saha, C. R. ;
Roy, S. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2007, 17 (07) :1257-1265
[4]   Energy harvesting vibration sources for microsystems applications [J].
Beeby, S. P. ;
Tudor, M. J. ;
White, N. M. .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2006, 17 (12) :R175-R195
[5]   Modelling and experimental characterization of an energy harvester with bi-stable compliance characteristics [J].
Cammarano, A. ;
Burrow, S. G. ;
Barton, D. A. W. .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2011, 225 (I4) :475-484
[6]   A vibration energy harvesting device with bidirectional resonance frequency tunability [J].
Challa, Vinod R. ;
Prasad, M. G. ;
Shi, Yong ;
Fisher, Frank T. .
SMART MATERIALS AND STRUCTURES, 2008, 17 (01)
[7]  
Coleman HW, 1999, EXPT UNCERTAINTY UNC
[8]   A piezomagnetoelastic structure for broadband vibration energy harvesting [J].
Erturk, A. ;
Hoffmann, J. ;
Inman, D. J. .
APPLIED PHYSICS LETTERS, 2009, 94 (25)
[9]   A MEMS acoustic energy harvester [J].
Horowitz, S. B. ;
Sheplak, M. ;
Cattafesta, L. N., III ;
Nishida, T. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2006, 16 (09) :S174-S181
[10]   Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload [J].
Leland, Eli S. ;
Wright, Paul K. .
SMART MATERIALS AND STRUCTURES, 2006, 15 (05) :1413-1420