Effect of Atmospheric Pressure Plasma and Subsequent Enzymatic Treatment on Flax Fabrics

被引:3
作者
Zhong Shaofeng [1 ,2 ]
Yang Bin [1 ]
Ou Qiongrong [2 ]
机构
[1] Zhejiang Ind Polytech Coll, Dept Text, Shaoxing 312000, Peoples R China
[2] Fudan Univ, Dept Light Sources & Illuminating Engn, Shanghai 200433, Peoples R China
关键词
flax fabrics; APDBD plasma; cellulase enzyme; surface modification; CELLULOSE-CONTAINING FABRICS; LINEN-CONTAINING FABRICS; MECHANICAL-PROPERTIES; SURFACE MODIFICATION; FIBERS; PENETRATION;
D O I
10.1088/1009-0630/17/9/08
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The objective is to investigate the effect of atmospheric pressure dielectric barrier discharge (APDBD) plasma and subsequent cellulase enzyme treatment on the properties of flax fabrics. The changes of surface morphology and structure, physico-mechanical properties, hydrophilicity, bending properties, whiteness, and dyeing properties of the treated substrate were investigated. The results indicated that atmospheric pressure dielectric barrier discharge plasma pre-treatment and subsequent cellulase enzyme treatment could diminish the hairiness of flax fabrics, endowing the flax fabrics with good bending properties, water uptake and fiber accessibility while keeping their good mechanical properties compared with those treated with cellulase enzyme alone.
引用
收藏
页码:767 / 773
页数:7
相关论文
共 50 条
  • [31] EFFECTS OF ATMOSPHERIC PLASMA ON THE PRINTABILITY OF WOOL FABRICS
    Ozdogan, Esen
    Demir, Ash
    Karahan, H. Aylin
    Ayhan, Hakan
    Seventekin, Necdet
    [J]. TEKSTIL VE KONFEKSIYON, 2009, 19 (02): : 123 - 127
  • [32] Functionalization of cellulose-containing fabrics by plasma and subsequent metal salt treatments
    Ibrahim, N. A.
    Eid, B. M.
    Youssef, M. A.
    El-Sayed, S. A.
    Salah, A. M.
    [J]. CARBOHYDRATE POLYMERS, 2012, 90 (02) : 908 - 914
  • [33] Effect of liquid impregnation on DBD atmospheric pressure plasma treatment of cotton
    Molina, Ricardo
    Bitar, Rim
    Cools, Pieter
    Morent, Rino
    De Geyter, Nathalie
    [J]. CELLULOSE, 2020, 27 (13) : 7847 - 7859
  • [34] Effect of Atmospheric Plasma Treatment on Carbon Fiber/Epoxy Interfacial Adhesion
    Zhao, Yi
    Zhang, Chuyang
    Shao, Xin
    Wang, Youjiang
    Qiu, Yiping
    [J]. JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY, 2011, 25 (20) : 2897 - 2908
  • [35] Effect of Atmospheric-Pressure Plasma Treatment on the Adhesion Characteristics of a Flexible Copper Clad Laminate
    Noh, Bo-In
    Jo, Jung-Rae
    Jung, Seung-Boo
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2009, 54 (03) : 1217 - 1222
  • [36] The effect of plasma treatment on water absorption properties of silk fabrics
    Kan, Chi-wai
    Lam, Yin-ling
    [J]. FIBERS AND POLYMERS, 2015, 16 (08) : 1705 - 1714
  • [37] Improvement in water and oil absorbency of textile substrate by atmospheric pressure cold plasma treatment
    Samanta, Kartick Kumar
    Jassal, Manjeet
    Agrawal, Ashwini K.
    [J]. SURFACE & COATINGS TECHNOLOGY, 2009, 203 (10-11) : 1336 - 1342
  • [38] Atmospheric Pressure Plasma Treatment for Grey Cotton Knitted Fabric
    Kan, Chi-wai
    Lam, Chui-fung
    [J]. POLYMERS, 2018, 10 (01):
  • [39] Comparison of low and atmospheric pressure air plasma treatment of polyethylene
    Kikani, P.
    Desai, B.
    Prajapati, S.
    Arun, P.
    Chauhan, N.
    Nema, S. K.
    [J]. SURFACE ENGINEERING, 2013, 29 (03) : 211 - 221
  • [40] Comparing efficiencies of polypropylene treatment by atmospheric pressure plasma jets
    Polaskova, Katerina
    Ozkan, Alp
    Klima, Milos
    Jenikova, Zdenka
    Buddhadasa, Madhuwanthi
    Reniers, Francois
    Zajickova, Lenka
    [J]. PLASMA PROCESSES AND POLYMERS, 2023, 20 (11)