Supercapacitor performance of binder-free buckypapers from multiwall carbon nanotubes synthesized at different temperatures

被引:15
作者
Popov, K. M. [1 ]
Arkhipov, V. E. [1 ]
Kurenya, A. G. [1 ]
Fedorovskaya, E. O. [1 ,2 ]
Kovalenko, K. A. [1 ]
Okotrub, A. V. [1 ,2 ]
Bulusheva, L. G. [1 ,2 ]
机构
[1] SB RAS, Nikolaev Inst Inorgan Chem, 3 Acad Lavrentiev Ave, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, 2 Pirogova Str, Novosibirsk 630090, Russia
来源
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS | 2016年 / 253卷 / 12期
基金
俄罗斯基础研究基金会;
关键词
binder-free electrode; CCVD synthesis; long-term cycling; multiwall carbon nanotubes; supercapacitor; FABRICATION; CAPACITANCE; ELECTRODE; AEROSOL; FILMS;
D O I
10.1002/pssb.201600240
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Multiwall carbon nanotubes (MWCNTs) have been synthesized by aerosol-assisted catalytic chemical vapor deposition method from a 2% ferrocene solution in toluene at temperatures of 720 and 800 degrees C. After an oxidation by a HNO3/H2SO4 mixture, MWCNTs were dispersed in water and deposited in form of buckypapers with a thickness of approximate to 150m. The obtained materials were used as working electrodes of supercapacitors without adding of binder. The electrode from MWCNTs synthesized at lower temperature showed the larger capacitance in 1M H2SO4 and 6M KOH electrolytes, especially at low scan rates. An increase of double-layer capacitance was due to larger specific surface and microporosity of the material; a gain in pseudocapacitance was attributed to larger quantity of oxygenated groups developed on the defective surface of nanotubes. The electrode showed a good cyclic performance during a repetitive charge/discharge test. A larger specific capacitance of MWCNTs synthesized at 720 degrees C is related with etching of nanotube tips and higher oxygenation of nanotube surface as the result of binder-free buckypaper electrode preparation.
引用
收藏
页码:2406 / 2412
页数:7
相关论文
共 31 条
[1]  
An KH, 2001, ADV MATER, V13, P497, DOI 10.1002/1521-4095(200104)13:7<497::AID-ADMA497>3.0.CO
[2]  
2-H
[3]   Carbon nanosheet buckypaper: A graphene-carbon nanotube hybrid material for enhanced supercapacitor performance [J].
Brown, Billyde ;
Swain, Benjamin ;
Hiltwine, Judy ;
Brooks, D. Bradford ;
Zhou, Zhiguo .
JOURNAL OF POWER SOURCES, 2014, 272 :979-986
[4]   Fabrication of free-standing aligned multiwalled carbon nanotube array for Li-ion batteries [J].
Bulusheva, L. G. ;
Arkhipov, V. E. ;
Fedorovskaya, E. O. ;
Zhang, Su ;
Kurenya, A. G. ;
Kanygin, M. A. ;
Asanov, I. P. ;
Tsygankova, A. R. ;
Chen, Xiaohong ;
Song, Huaihe ;
Okotrub, A. V. .
JOURNAL OF POWER SOURCES, 2016, 311 :42-48
[5]   Supercapacitor performance of nitrogen-doped carbon nanotube arrays [J].
Bulusheva, L. G. ;
Fedorovskaya, E. O. ;
Kurenya, A. G. ;
Okotrub, A. V. .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2013, 250 (12) :2586-2591
[6]   Supercritical fluid deposition of vanadium oxide on multi-walled carbon nanotube buckypaper for supercapacitor electrode application [J].
Do, Quyet Huu ;
Zeng, Changchun ;
Zhang, Chuck ;
Wang, Ben ;
Zheng, Jim .
NANOTECHNOLOGY, 2011, 22 (36)
[7]   High power density supercapacitors using locally aligned carbon nanotube electrodes [J].
Du, CS ;
Yeh, J ;
Pan, N .
NANOTECHNOLOGY, 2005, 16 (04) :350-353
[8]   Effect of oxidative treatment on the electrochemical properties of aligned multi-walled carbon nanotubes [J].
Fedorovskaya, E. O. ;
Bulusheva, L. G. ;
Kurenya, A. G. ;
Asanov, I. P. ;
Okotrub, A. V. .
RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2016, 52 (05) :441-448
[9]   Supercapacitor performance of vertically aligned multiwall carbon nanotubes produced by aerosol-assisted CCVD method [J].
Fedorovskaya, E. O. ;
Bulusheva, L. G. ;
Kurenya, A. G. ;
Asanov, I. P. ;
Rudina, N. A. ;
Funtov, K. O. ;
Lyubutin, I. S. ;
Okotrub, A. V. .
ELECTROCHIMICA ACTA, 2014, 139 :165-172
[10]   Supercapacitor Performance of Aligned Carbon Nanotube/Polyaniline Composite Depending on the Duration of Aniline Polycondensation [J].
Fedorovskaya, E. O. ;
Okotrub, A. V. ;
Bulusheva, L. G. .
FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2012, 20 (4-7) :519-522