High-Resolution Image Harmonization via Collaborative Dual Transformations

被引:35
作者
Cong, Wenyan [1 ]
Tao, Xinhao [2 ]
Niu, Li [1 ]
Liang, Jing [1 ]
Gao, Xuesong [3 ,4 ]
Sun, Qihao [4 ]
Zhang, Liqing [1 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai, Peoples R China
[2] Harbin Inst Technol, Harbin, Peoples R China
[3] Tianjin Univ, Tianjin, Peoples R China
[4] Hisense, Qingdao, Peoples R China
来源
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022) | 2022年
关键词
D O I
10.1109/CVPR52688.2022.01792
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Given a composite image, image harmonization aims to adjust the foreground to make it compatible with the background. High -resolution image harmonization is in high demand, but still remains unexplored. Conventional image harmonization methods learn global RGB-to-RGB transformation which could effortlessly scale to high resolution, but ignore diverse local context. Recent deep learning methods learn the dense pixel-to-pixel transformation which could generate harmonious outputs, but are highly constrained in low resolution. In this work, we propose a high -resolution image harmonization network with Collaborative Dual Transformation (CDTNet) to combine pixelto-pixel transformation and RGB-to-RGB transformation coherently in an end-to-end network. Our CDTNet consists of a low-resolution generator for pixel-to-pixel transformation, a color mapping module for RGB-to-RGB transformation, and a refinement module to take advantage of both. Extensive experiments on high-resolution benchmark dataset and our created high -resolution real composite images demonstrate that our CDTNet strikes a good balance between efficiency and effectiveness.
引用
收藏
页码:18449 / 18458
页数:10
相关论文
共 42 条
[1]  
Andreini P, 2019, ARXIV PREPRINT ARXIV
[2]  
Anokhin Ivan, 2020, IEEE C COMP VIS PATT
[3]  
[Anonymous], 2017, CVPR, DOI DOI 10.1109/CVPR.2017.299
[4]  
[Anonymous], 2018, CVPR, DOI DOI 10.1163/9789004385580002
[5]  
[Anonymous], 2019, CVPR, DOI DOI 10.1109/CVPR.2019.00741
[6]  
[Anonymous], 2019, CVPR, DOI DOI 10.1109/CVPR.2019.01197
[7]   Photographic Image Synthesis with Cascaded Refinement Networks [J].
Chen, Qifeng ;
Koltun, Vladlen .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :1520-1529
[8]   Color harmonization [J].
Cohen-Or, Daniel ;
Sorkine, Olga ;
Gal, Ran ;
Leyvand, Tommer ;
Xu, Ying-Qing .
ACM TRANSACTIONS ON GRAPHICS, 2006, 25 (03) :624-630
[9]  
Cong W., 2021, ICME
[10]  
Cong WY, 2020, PROC CVPR IEEE, P8391, DOI 10.1109/CVPR42600.2020.00842