Modeling Percent Tree Canopy Cover: A Pilot Study

被引:169
作者
Coulston, John W. [1 ]
Moisen, Gretchen G. [2 ]
Wilson, Barry T. [3 ]
Finco, Mark V. [4 ]
Cohen, Warren B. [5 ]
Brewer, C. Kenneth [6 ]
机构
[1] US Forest Serv, Knoxville, TN 37919 USA
[2] US Forest Serv, Ogden, UT 84401 USA
[3] US Forest Serv, St Paul, MN 55108 USA
[4] Red Castle Resources, Salt Lake City, UT 84119 USA
[5] US Forest Serv, Corvallis, OR 97331 USA
[6] US Forest Serv, Arlington, VA 22209 USA
关键词
FOREST INVENTORY; BETA REGRESSION; DATABASE; BIOMASS; US; CARBON; AREA;
D O I
10.14358/PERS.78.7.715
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Tree canopy cover is a fundamental component of the landscape, and the amount of cover influences fire behavior, air pollution mitigation, and carbon storage. As such, efforts to empirically model percent tree canopy cover across the United States are a critical area of research. The 2001 national-scale canopy cover modeling and mapping effort was completed in 2006, and here we present results from a pilot study for a 2011 product. We examined the influence of two different modeling techniques (random forests and beta regression), two different Landsat imagery normalization processes, and eight different sampling intensities across five different pilot areas. We found that random forest out-performed beta regression techniques and that there was little difference between models developed based on the two different normalization techniques. Based on these results we present a prototype study design which will test canopy cover modeling approaches across a broader spatial scale.
引用
收藏
页码:715 / 727
页数:13
相关论文
共 40 条
  • [1] [Anonymous], MODELMAP R PACKAGE M
  • [2] Avery T.E., 1994, FOREST MEASUREMENTS, V4th
  • [3] Beaty M., 2010, RSAC10012RPT1 USDA F
  • [4] Bechtold W.A., 2005, Gen. Tech. Rep. SRS-80, P80, DOI DOI 10.2737/SRS-GTR-80
  • [5] Mapping US forest biomass using nationwide forest inventory data and moderate resolution information
    Blackard, J. A.
    Finco, M. V.
    Helmer, E. H.
    Holden, G. R.
    Hoppus, M. L.
    Jacobs, D. M.
    Lister, A. J.
    Moisen, G. G.
    Nelson, M. D.
    Riemann, R.
    Ruefenacht, B.
    Salajanu, D.
    Weyermann, D. L.
    Winterberger, K. C.
    Brandeis, T. J.
    Czaplewski, R. L.
    McRoberts, R. E.
    Patterson, P. L.
    Tymcio, R. P.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2008, 112 (04) : 1658 - 1677
  • [6] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [7] Cochran W. G., 1977, SAMPLING TECHNIQUES
  • [8] Assessing forestland area based on canopy cover in a semi-arid region: a case study
    Coulston, J. W.
    Oswalt, S. N.
    Carraway, A. B.
    Smith, W. B.
    [J]. FORESTRY, 2010, 83 (02): : 143 - 151
  • [9] Cribari-Neto F, 2010, J STAT SOFTW, V34, P1
  • [10] Duane MV, 2010, FOREST SCI, V56, P405