Recent evidence that TADs and chromatin loops are dynamic structures

被引:162
作者
Hansen, Anders S. [1 ,2 ]
Cattoglio, Claudia [1 ,2 ]
Darzacq, Xavier [1 ]
Tjian, Robert [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Mol & Cell Biol, CIRM Ctr Excellence, Li Ka Shing Ctr Biomed & Hlth Sci, 229 Stanley Hall, Berkeley, CA 94720 USA
[2] Howard Hughes Med Inst, Berkeley, CA 94720 USA
基金
美国国家卫生研究院;
关键词
CTCF; cohesin; 3D genome; single-molecule imaging; dynamics; FRAP; topological domains; chromatin loops; loop extrusion; modeling; HI-C REVEALS; MAMMALIAN GENOMES; CHROMOSOME CONFORMATION; REGULATORY LANDSCAPES; TOPOLOGICAL DOMAINS; HIGH-RESOLUTION; 3D GENOME; CTCF; COHESIN; ORGANIZATION;
D O I
10.1080/19491034.2017.1389365
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Mammalian genomes are folded into spatial domains, which regulate gene expression by modulating enhancer-promoter contacts. Here, we review recent studies on the structure and function of Topologically Associating Domains (TADs) and chromatin loops. We discuss how loop extrusion models can explain TAD formation and evidence that TADs are formed by the ring-shaped protein complex, cohesin, and that TAD boundaries are established by the DNA-binding protein, CTCF. We discuss our recent genomic, biochemical and single-molecule imaging studies on CTCF and cohesin, which suggest that TADs and chromatin loops are dynamic structures. We highlight complementary polymer simulation studies and Hi-C studies employing acute depletion of CTCF and cohesin, which also support such a dynamic model. We discuss the limitations of each approach and conclude that in aggregate the available evidence argues against stable loops and supports a model where TADs are dynamic structures that continually form and break throughout the cell cycle.
引用
收藏
页码:20 / 32
页数:13
相关论文
共 76 条
  • [1] Self-organization of domain structures by DNA-loop-extruding enzymes
    Alipour, Elnaz
    Marko, John F.
    [J]. NUCLEIC ACIDS RESEARCH, 2012, 40 (22) : 11202 - 11212
  • [2] Characterization of hundreds of regulatory landscapes in developing limbs reveals two regimes of chromatin folding
    Andrey, Guillaume
    Schoeflin, Robert
    Jerkovic, Ivana
    Heinrich, Verena
    Ibrahim, Daniel M.
    Paliou, Christina
    Hochradel, Myriam
    Timmermann, Bernd
    Haas, Stefan
    Vingron, Martin
    Mundlos, Stefan
    [J]. GENOME RESEARCH, 2017, 27 (02) : 223 - 233
  • [3] The three-dimensional folding of the α-globin gene domain reveals formation of chromatin globules
    Bau, Davide
    Sanyal, Amartya
    Lajoie, Bryan R.
    Capriotti, Emidio
    Byron, Meg
    Lawrence, Jeanne B.
    Dekker, Job
    Marti-Renom, Marc A.
    [J]. NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2011, 18 (01) : 107 - +
  • [4] YY1 and CTCF orchestrate a 3D chromatin looping switch during early neural lineage commitment
    Beagan, Jonathan A.
    Duong, Michael T.
    Titus, Katelyn R.
    Zhou, Linda
    Cao, Zhendong
    Ma, Jingjing
    Lachanski, Caroline V.
    Gillis, Daniel R.
    Phillips-Cremins, Jennifer E.
    [J]. GENOME RESEARCH, 2017, 27 (07) : 1139 - 1152
  • [5] Complex multi-enhancer contacts captured by genome architecture mapping
    Beagrie, Robert A.
    Scialdone, Antonio
    Schueler, Markus
    Kraemer, Dorothee C. A.
    Chotalia, Mita
    Xie, Sheila Q.
    Barbieri, Mariano
    de Santiago, Ines
    Lavitas, Liron-Mark
    Branco, Miguel R.
    Fraser, James
    Dostie, Josee
    Game, Laurence
    Dillon, Niall
    Edwards, Paul A. W.
    Nicodemi, Mario
    Pombo, Ana
    [J]. NATURE, 2017, 543 (7646) : 519 - +
  • [6] Models that include supercoiling of topological domains reproduce several known features of interphase chromosomes
    Benedetti, Fabrizio
    Dorier, Julien
    Burnier, Yannis
    Stasiak, Andrzej
    [J]. NUCLEIC ACIDS RESEARCH, 2014, 42 (05) : 2848 - 2855
  • [7] Exploiting native forces to capture chromosome conformation in mammalian cell nuclei
    Brant, Lilija
    Georgomanolis, Theodore
    Nikolic, Milos
    Brackley, Chris A.
    Kolovos, Petros
    van Ijcken, Wilfred
    Grosveld, Frank G.
    Marenduzzo, Davide
    Papantonis, Argyris
    [J]. MOLECULAR SYSTEMS BIOLOGY, 2016, 12 (12)
  • [8] Cohesin is positioned in mammalian genomes by transcription, CTCF and Wapl
    Busslinger, Georg A.
    Stocsits, Roman R.
    van der Lelij, Petra
    Axelsson, Elin
    Tedeschi, Antonio
    Galjart, Niels
    Peters, Jan-Michael
    [J]. NATURE, 2017, 544 (7651) : 503 - +
  • [9] Nuclear Aggregation of Olfactory Receptor Genes Governs Their Monogenic Expression
    Clowney, E. Josephine
    LeGros, Mark A.
    Mosley, Colleen P.
    Clowney, Fiona G.
    Markenskoff-Papadimitriou, Eirene C.
    Myllys, Markko
    Barnea, Gilad
    Larabell, Carolyn A.
    Lomvardas, Stavros
    [J]. CELL, 2012, 151 (04) : 724 - 737
  • [10] Chromosome Territories
    Cremer, Thomas
    Cremer, Marion
    [J]. COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2010, 2 (03): : a003889