Reversals of a large-scale field generated over a turbulent background

被引:46
作者
Gallet, B. [1 ]
Herault, J. [1 ]
Laroche, C. [1 ]
Petrelis, F. [1 ]
Fauve, S. [1 ]
机构
[1] Ecole Normale Super, Lab Phys Stat, CNRS, F-75005 Paris, France
关键词
Dynamo; Convection; Turbulence; Reversals; MAGNETIC-FIELD; DYNAMO; CONVECTION; FLOW; INSTABILITY; PATTERNS; ORDER; MODEL; BIFURCATION; CHAOS;
D O I
10.1080/03091929.2011.648629
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a study of several systems in which a large-scale field is generated over a turbulent background. These large-scale fields break a symmetry of the forcing by selecting a direction. Under certain conditions, the large-scale field displays reversals so that the symmetry of the forcing is recovered statistically. We present examples of such dynamics in the context of the dynamo instability, of two-dimensional turbulent Kolmogorov flows and of turbulent Rayleigh-Benard convection. In these systems reversals occur respectively for the dynamo magnetic field, for the large-scale circulation generated by a periodic forcing in space and for the large-scale roll generated by turbulent thermal convection. We compare the mechanisms involved and show that their properties depend on some symmetries of the system and on the way they are broken.
引用
收藏
页码:468 / 492
页数:25
相关论文
共 65 条
[1]   Heat transfer and large scale dynamics in turbulent Rayleigh-Benard convection [J].
Ahlers, Guenter ;
Grossmann, Siegfried ;
Lohse, Detlef .
REVIEWS OF MODERN PHYSICS, 2009, 81 (02) :503-537
[2]  
[Anonymous], NONLINEAR OSCILLATIO
[3]  
Armbruster D, 2001, NATO SCI SER II-MATH, V26, P313
[4]   The quasi-biennial oscillation [J].
Baldwin, MP ;
Gray, LJ ;
Dunkerton, TJ ;
Hamilton, K ;
Haynes, PH ;
Randel, WJ ;
Holton, JR ;
Alexander, MJ ;
Hirota, I ;
Horinouchi, T ;
Jones, DBA ;
Kinnersley, JS ;
Marquardt, C ;
Sato, K ;
Takahashi, M .
REVIEWS OF GEOPHYSICS, 2001, 39 (02) :179-229
[5]   Bistability between a stationary and an oscillatory dynamo in a turbulent flow of liquid sodium [J].
Berhanu, M. ;
Gallet, B. ;
Monchaux, R. ;
Bourgoin, M. ;
Odier, Ph. ;
Pinton, J. -F. ;
Plihon, N. ;
Volk, R. ;
Fauve, S. ;
Mordant, N. ;
Petrelis, F. ;
Aumaitre, S. ;
Chiffaudel, A. ;
Daviaud, F. ;
Dubrulle, B. ;
Ravelet, F. .
JOURNAL OF FLUID MECHANICS, 2009, 641 :217-226
[6]  
Berhanu M., 2007, EPL-EUROPHYS LETT, V77, P59001
[7]   Turbulent convection in the zero Reynolds number limit [J].
Breuer, M. ;
Hansen, U. .
EPL, 2009, 86 (02)
[8]  
Brunhes B., 1906, Journal of Physics, V5, P705, DOI DOI 10.1051/JPHYSTAP:019060050070500
[9]  
CAROLI B, 1992, J PHYS I, V2, P281, DOI 10.1051/jp1:1992143
[10]  
Chandrasekhar S., 1961, Hydrodynamic and Hydromagnetic Stability