Functional data clustering via piecewise constant nonparametric density estimation

被引:22
作者
Boulle, Marc [1 ]
机构
[1] Orange Labs, F-22300 Lannion, France
关键词
Functional data; Distributional data; Exploratory analysis; Clustering; Bayesianism; Model selection; Density estimation;
D O I
10.1016/j.patcog.2012.05.016
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a novel way of analyzing and summarizing a collection of curves, based on piecewise constant density estimation. The curves are partitioned into clusters, and the dimensions of the curves points are discretized into intervals. The cross-product of these univariate partitions forms a data grid of cells, which represents a nonparametric estimator of the joint density of the curves and point dimensions. The best model is selected using a Bayesian model selection approach and retrieved using combinatorial optimization algorithms. The proposed method requires no parameter setting and makes no assumption regarding the curves; beyond functional data, it can be applied to distributional data. The practical interest of the approach for functional data and distributional data exploratory analysis is presented on two real world datasets. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4389 / 4401
页数:13
相关论文
共 39 条
  • [11] Boulle M., 2011, ORAL HLTH STATUS ORA
  • [12] Boulle M., 2011, DATA GRID MODELS PRE, P99
  • [13] A hidden process regression model for functional data description. Application to curve discrimination
    Chamroukhi, Faicel
    Same, Allou
    Govaert, Gerard
    Aknin, Patrice
    [J]. NEUROCOMPUTING, 2010, 73 (7-9) : 1210 - 1221
  • [14] Efficient time series matching by wavelets
    Chan, KP
    Fu, AWC
    [J]. 15TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING, PROCEEDINGS, 1999, : 126 - 133
  • [15] Cover T.M., 2006, ELEMENTS INFORM THEO, V2nd ed
  • [16] Robust nonparametric estimation for functional data
    Crambesa, C.
    Delsol, L.
    Laksaci, A.
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2008, 20 (07) : 573 - 598
  • [17] DEFINING PROBABILITY DENSITY FOR A DISTRIBUTION OF RANDOM FUNCTIONS
    Delaigle, Aurore
    Hall, Peter
    [J]. ANNALS OF STATISTICS, 2010, 38 (02) : 1171 - 1193
  • [18] Erhan D, 2010, J MACH LEARN RES, V11, P625
  • [19] Fayyad U., 1996, KDD-96 Proceedings. Second International Conference on Knowledge Discovery and Data Mining, P82
  • [20] Ferraty F., 2006, SPR S STAT