Scalar linear complementarity systems do not exhibit Zeno behavior

被引:1
作者
Camlibel, M. K. [1 ]
Pang, J-S [2 ]
Schumacher, J. M. [3 ]
Shen, J. [4 ]
机构
[1] Univ Groningen, Johann Bernoulli Inst Math & Comp Sci, Groningen, Netherlands
[2] Univ Southern Calif, Dept Ind & Syst Engn, Los Angeles, CA USA
[3] Univ Amsterdam, Amsterdam Sch Econ, Amsterdam, Netherlands
[4] Univ Maryland Baltimore Cty, Dept Math & Stat, Baltimore, MD 21228 USA
来源
IFAC PAPERSONLINE | 2017年 / 50卷 / 01期
关键词
Hybrid systems; linear complementarity systems; piecewise affine systems; Zeno behavior; AFFINE DYNAMICAL-SYSTEMS; HYBRID SYSTEMS; VARIATIONAL-INEQUALITIES; STABILITY; CONTROLLABILITY; NETWORKS;
D O I
10.1016/j.ifacol.2017.08.656
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies nature of solutions of scalar linear complementarity systems. The main result asserts that such systems do not exhibit Zeno behavior, that is there can only be finitely many switchings within any finite time interval. (C) 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:2947 / 2952
页数:6
相关论文
共 46 条
  • [1] Ames A.D., 2007, 2007 46th IEEE Conference on Decision and Control, P4033
  • [2] Is there life after Zeno? Taking executions past the breaking (Zeno) point
    Ames, Aaron D.
    Zheng, Haiyang
    Gregg, Robert D.
    Sastry, Shankar
    [J]. 2006 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2006, 1-12 : 2652 - +
  • [3] Ames AD, 2006, LECT NOTES COMPUT SC, V3927, P34
  • [4] Characterization of Zeno behavior in hybrid systems using homological methods
    Ames, AD
    Sastry, S
    [J]. ACC: Proceedings of the 2005 American Control Conference, Vols 1-7, 2005, : 1160 - 1165
  • [5] [Anonymous], 2007, 2007 46 IEEE C DEC C, DOI DOI 10.1109/CDC.2007.4435003
  • [6] [Anonymous], THESIS
  • [7] [Anonymous], 2001, THESIS
  • [8] On the equivalence between complementarity systems, projected systems and differential inclusions
    Brogliato, B
    Daniilidis, A
    Lemaréchal, C
    Acary, V
    [J]. SYSTEMS & CONTROL LETTERS, 2006, 55 (01) : 45 - 51
  • [9] Some results on the controllability of planar variational inequalities
    Brogliato, B
    [J]. SYSTEMS & CONTROL LETTERS, 2005, 54 (01) : 65 - 71
  • [10] Absolute stability and the Lagrange-Dirichlet theorem with monotone multivalued mappings
    Brogliato, B
    [J]. SYSTEMS & CONTROL LETTERS, 2004, 51 (05) : 343 - 353