Pareto Optimal Design of Dual-Band Base Station Antenna Arrays Using Multi-Objective Particle Swarm Optimization With Fitness Sharing

被引:34
作者
Goudos, Sotirios K. [1 ]
Zaharis, Zaharias D. [1 ,2 ]
Kampitaki, Dimitra G. [2 ]
Rekanos, Ioannis T. [3 ]
Hilas, Costas S. [4 ]
机构
[1] Aristotle Univ Thessaloniki, Telecommun Ctr, Thessaloniki 54124, Greece
[2] Alexander Technol Educ Inst Thessaloniki, Dept Elect, Thessaloniki 57400, Greece
[3] Aristotle Univ Thessaloniki, Sch Engn, Div Phys, Thessaloniki 54124, Greece
[4] Inst Educ Technol, Dept Informat & Commun, Serres 62124, Greece
关键词
Dual-band antenna array design; multi-objective optimization; Pareto optimization; particle swarm optimization; GENETIC ALGORITHM;
D O I
10.1109/TMAG.2009.2012695
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The design of dual-band base station antennas under constraints for mobile communications is addressed in this paper. Given the antenna geometry, the method of moments (MoM) is used to compute the antenna characteristics. Two distinct multi-objective evolutionary algorithms are applied in order to find the Pareto front of the feasible solutions that satisfy the design constraints. In the present work, the Multi-Objective Particle Swarm Optimization with fitness sharing (MOPSO-fs) is compared with the Nondominated Sorting Genetic Algorithm-II (NSGA-II) in order to optimize the antenna geometry. Two design cases are presented. The first case is a five-element array operating in GSM1800/UMTS frequency bands. The second base station antenna array consists of six elements operating in UMTS/WLAN (2.4 GHz) frequency bands.
引用
收藏
页码:1522 / 1525
页数:4
相关论文
共 11 条
[1]   Pareto optimality and particle swarm optimization [J].
Baumgartner, U ;
Magele, C ;
Renhart, W .
IEEE TRANSACTIONS ON MAGNETICS, 2004, 40 (02) :1172-1175
[2]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[3]   Dielectric filter optimal design suitable for microwave communications by using multiobjective evolutionary algorithms [J].
Goudos, S. K. ;
Zaharis, Z. D. ;
Salazar-Lechuga, M. ;
Lazaridis, P. I. ;
Gallion, P. B. .
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2007, 49 (10) :2324-2329
[4]   A particle swarm optimization-based method for multiobjective design optimizations [J].
Ho, SL ;
Yang, SY ;
Ni, GZ ;
Lo, EWC ;
Wong, HC .
IEEE TRANSACTIONS ON MAGNETICS, 2005, 41 (05) :1756-1759
[5]  
Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968
[6]   Linear array geometry synthesis with minimum sidelobe level and null control using particle swarm optimization [J].
Khodier, MM ;
Christodoulou, CG .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2005, 53 (08) :2674-2679
[7]  
Moore J., 1984, MOMENT METHODS ELECT
[8]   The real-biased multiobjective genetic algorithm and its application to the design of wire antennas [J].
Ramos, RM ;
Saldanha, RR ;
Takahashi, RHC ;
Moreira, FJS .
IEEE TRANSACTIONS ON MAGNETICS, 2003, 39 (03) :1329-1332
[9]  
Salazar-Lechuga M, 2005, IEEE C EVOL COMPUTAT, P1204
[10]   Treating constraints as objectives in multiobjective optimization problems using niched pareto genetic algorithm [J].
Vieira, DAG ;
Adriano, RLS ;
Vasconcelos, JA ;
Krähenbühl, L .
IEEE TRANSACTIONS ON MAGNETICS, 2004, 40 (02) :1188-1191