Algebraic Numbers of the form αT with α Algebraic and T Transcendental

被引:1
作者
Hubalovsky, Stepan [1 ]
Trojovska, Eva [2 ]
机构
[1] Univ Hradec Kralove, Fac Sci, Dept Appl Cybernet, Hradec Kralove 50003, Czech Republic
[2] Univ Hradec Kralove, Fac Sci, Dept Math, Hradec Kralove 50003, Czech Republic
关键词
Gelfond-Schneider theorem; algebraic numbers; transcendence; Schanuel's conjecture;
D O I
10.3390/math8101687
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let alpha not equal 1 be a positive real number and let P(x) be a non-constant rational function with algebraic coefficients. In this paper, in particular, we prove that the set of algebraic numbers of the form alpha P(T), with T transcendental, is dense in some open interval of R.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 12 条
[1]  
Baker A., 1990, Transcendental number theory, V2nd
[2]   Some consequences of Schanuel's conjecture [J].
Cheng, Chuangxun ;
Dietel, Brian ;
Herblot, Mathilde ;
Huang, Jingjing ;
Krieger, Holly ;
Marques, Diego ;
Mason, Jonathan ;
Mereb, Martin ;
Wilson, S. Robert .
JOURNAL OF NUMBER THEORY, 2009, 129 (06) :1464-1467
[3]   SOME FIELD THEORETIC PROPERTIES AND AN APPLICATION CONCERNING TRANSCENDENTAL NUMBERS [J].
Jensen, Christian U. ;
Marques, Diego .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2010, 9 (03) :493-500
[4]  
LANG S., 1966, Introduction to Lang-Chain
[5]   On Transcendental Numbers: New Results and a Little History [J].
Marcus, Solomon ;
Nichita, Florin F. .
AXIOMS, 2018, 7 (01)
[6]  
MARQUES D, 2010, E W J MATH, V12, P75
[7]   Algebraic numbers of the form P(T)(Q(T)) with T transcendental [J].
Marques, Diego .
ELEMENTE DER MATHEMATIK, 2010, 65 (02) :78-80
[8]   On Transcendental Numbers [J].
Nichita, Florin F. .
AXIOMS, 2014, 3 (01) :64-69
[9]  
Niven I, 1956, IRRATIONAL NUMBERS
[10]  
Sondow J, 2010, ANN MATH INFORM, V37, P151