Truncated conformal space approach for perturbed Wess-Zumino-Witten SU(2)k models

被引:17
作者
Beria, M. [1 ,2 ]
Brandino, G. P. [3 ]
Lepori, L. [4 ,5 ,6 ,7 ]
Konik, R. M. [8 ]
Sierra, G. [9 ]
机构
[1] SISSA Int Sch Adv Studies, I-34136 Trieste, Italy
[2] Ist Nazl Fis Nucl, Sez Trieste, Rome, Italy
[3] Univ Amsterdam, Inst Theoret Phys, NL-1090 GL Amsterdam, Netherlands
[4] Univ Autonoma Barcelona, Dept Fis, E-08193 Bellaterra, Spain
[5] IPCMS, UMR 7504, Strasbourg, France
[6] Univ Strasbourg, ISIS, UMR 7006, Strasbourg, France
[7] CNRS, Strasbourg, France
[8] Brookhaven Natl Lab, Condensed Matter & Mat Sci Dept, Upton, NY 11973 USA
[9] UAM CSIC, Inst Fis Teor, Madrid, Spain
基金
美国国家科学基金会;
关键词
NONLINEAR INTEGRAL-EQUATION; SINE-GORDON THEORY; FIELD-THEORIES; RENORMALIZATION-GROUP; HEISENBERG CHAIN; MAGNETIC-FIELD; EXCITED-STATES; DIMENSIONS; ISING-MODEL; ENERGY;
D O I
10.1016/j.nuclphysb.2013.10.005
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We outline the application of the truncated conformal space approach (TCSA) to perturbations of SU(2)(k) Wess-Zumino-Witten theories. As examples of this methodology, we consider two distinct perturbations of SU (2)(1) and one of SU(2)(2). SU (2)(1) is first perturbed by its spin-1/2 field, a model which is equivalent to the sine-Gordon model at a particular value of its coupling beta. The sine-Gordon spectrum is correctly reproduced as well as the corresponding finite-size corrections. We next study SU (2)(1) with a marginal current current perturbation. The TCSA results can be matched to perturbation theory within an appropriate treatment of the UV divergences. We find however that these results do not match field theoretic computations on the same model performed with a Lorentz invariant regulator. Finally, we consider SU(2)2 perturbed by its spin-1 field, which is equivalent to three decoupled massive Majorana fermions. In this case as well the TCSA reproduces accurately the known spectrum. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:457 / 483
页数:27
相关论文
共 63 条
[1]   CRITICAL-THEORY OF QUANTUM SPIN CHAINS [J].
AFFLECK, I ;
HALDANE, FDM .
PHYSICAL REVIEW B, 1987, 36 (10) :5291-5300
[2]   CRITICAL-BEHAVIOR OF SPIN-S HEISENBERG ANTIFERROMAGNETIC CHAINS - ANALYTIC AND NUMERICAL RESULTS [J].
AFFLECK, I ;
GEPNER, D ;
SCHULZ, HJ ;
ZIMAN, T .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (05) :511-529
[3]  
Affleck I., 1988, P LES HOUCHES SUMMER
[4]  
[Anonymous], 1989, ADV STUD PURE MATH, DOI DOI 10.2969/ASPM/01910641
[5]   Nonperturbative study of the two-frequency sine-Gordon model [J].
Bajnok, Z ;
Palla, L ;
Takács, G ;
Wágner, F .
NUCLEAR PHYSICS B, 2001, 601 (03) :503-538
[6]   S=1/2 alternating chain using multiprecision methods [J].
Barnes, T ;
Riera, J ;
Tennant, DA .
PHYSICAL REVIEW B, 1999, 59 (17) :11384-11397
[7]  
Baxter R., 2007, Exactly Solved Models in Statistical Mechanics
[8]  
Berg B., 1979, NUCL PHYS B, V134, P253
[9]   Energy level distribution of perturbed conformal field theories [J].
Brandino, G. P. ;
Konik, R. M. ;
Mussardo, G. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
[10]  
Cardy J., COMMUNICATION