Network deconvolution as a general method to distinguish direct dependencies in networks

被引:193
作者
Feizi, Soheil [1 ,2 ,3 ]
Marbach, Daniel [1 ,2 ]
Medard, Muriel [3 ]
Kellis, Manolis [1 ,2 ]
机构
[1] MIT, CSAIL, Cambridge, MA 02139 USA
[2] Broad Inst MIT & Harvard, Cambridge, MA USA
[3] MIT, Elect Res Lab, Cambridge, MA 02139 USA
基金
美国国家卫生研究院; 瑞士国家科学基金会; 美国国家科学基金会;
关键词
REGULATORY NETWORKS; TRANSCRIPTIONAL REGULATION; STRUCTURE PREDICTION; RESIDUE CONTACTS; INFORMATION; INFERENCE; ALGORITHM; DISCOVERY;
D O I
10.1038/nbt.2635
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Recognizing direct relationships between variables connected in a network is a pervasive problem in biological, social and information sciences as correlation-based networks contain numerous indirect relationships. Here we present a general method for inferring direct effects from an observed correlation matrix containing both direct and indirect effects. We formulate the problem as the inverse of network convolution, and introduce an algorithm that removes the combined effect of all indirect paths of arbitrary length in a closed-form solution by exploiting eigen-decomposition and infinite-series sums. We demonstrate the effectiveness of our approach in several network applications: distinguishing direct targets in gene expression regulatory networks; recognizing directly interacting amino-acid residues for protein structure prediction from sequence alignments; and distinguishing strong collaborations in co-authorship social networks using connectivity information alone. In addition to its theoretical impact as a foundational graph theoretic tool, our results suggest network deconvolution is widely applicable for computing direct dependencies in network science across diverse disciplines.
引用
收藏
页码:726 / +
页数:9
相关论文
共 57 条
[1]   CORRELATION OF COORDINATED AMINO-ACID SUBSTITUTIONS WITH FUNCTION IN VIRUSES RELATED TO TOBACCO MOSAIC-VIRUS [J].
ALTSCHUH, D ;
LESK, AM ;
BLOOMER, AC ;
KLUG, A .
JOURNAL OF MOLECULAR BIOLOGY, 1987, 193 (04) :693-707
[2]   Computational discovery of gene modules and regulatory networks [J].
Bar-Joseph, Z ;
Gerber, GK ;
Lee, TI ;
Rinaldi, NJ ;
Yoo, JY ;
Robert, F ;
Gordon, DB ;
Fraenkel, E ;
Jaakkola, TS ;
Young, RA ;
Gifford, DK .
NATURE BIOTECHNOLOGY, 2003, 21 (11) :1337-1342
[3]   The Inferelator:: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo [J].
Bonneau, Richard ;
Reiss, David J. ;
Shannon, Paul ;
Facciotti, Marc ;
Hood, Leroy ;
Baliga, Nitin S. ;
Thorsson, Vesteinn .
GENOME BIOLOGY, 2006, 7 (05)
[4]   Disentangling Direct from Indirect Co-Evolution of Residues in Protein Alignments [J].
Burger, Lukas ;
van Nimwegen, Erik .
PLOS COMPUTATIONAL BIOLOGY, 2010, 6 (01)
[5]  
Butte A J, 2000, Pac Symp Biocomput, P418
[6]   Discovery of meaningful associations in genomic data using partial correlation coefficients [J].
de la Fuente, A ;
Bing, N ;
Hoeschele, I ;
Mendes, P .
BIOINFORMATICS, 2004, 20 (18) :3565-3574
[7]   Advantages and limitations of current network inference methods [J].
De Smet, Riet ;
Marchal, Kathleen .
NATURE REVIEWS MICROBIOLOGY, 2010, 8 (10) :717-729
[8]   Chemogenomic profiling on a genomewide scale using reverse-engineered gene networks [J].
di Bernardo, D ;
Thompson, MJ ;
Gardner, TS ;
Chobot, SE ;
Eastwood, EL ;
Wojtovich, AP ;
Elliott, SJ ;
Schaus, SE ;
Collins, JJ .
NATURE BIOTECHNOLOGY, 2005, 23 (03) :377-383
[9]   Mutual information without the influence of phylogeny or entropy dramatically improves residue contact prediction [J].
Dunn, S. D. ;
Wahl, L. M. ;
Gloor, G. B. .
BIOINFORMATICS, 2008, 24 (03) :333-340
[10]   Improved contact prediction in proteins: Using pseudolikelihoods to infer Potts models [J].
Ekeberg, Magnus ;
Lovkvist, Cecilia ;
Lan, Yueheng ;
Weigt, Martin ;
Aurell, Erik .
PHYSICAL REVIEW E, 2013, 87 (01)