Moduli spaces of parabolic higgs bundles and parabolic K(D) pairs over smooth curves .1.

被引:67
作者
Boden, HU
Yokogawa, K
机构
[1] Max-Planck-Institut für Math., 53225 Bonn
关键词
D O I
10.1142/S0129167X96000311
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper concerns the moduli spaces of rank-two parabolic Higgs bundles and parabolic K(D) pairs over a smooth curve. Precisely which parabolic bundles occur in stable K(D) pairs and stable Higgs bundles is determined. Using Morse theory, the moduli space of parabolic Higgs bundles is shown to be a non-compact, connected, simply connected manifold, and a computation of its Poincare polynomial is given.
引用
收藏
页码:573 / 598
页数:26
相关论文
共 32 条
[1]  
[Anonymous], 1994, PUBL MATH
[2]  
[Anonymous], 1978, Principles of algebraic geometry
[3]  
[Anonymous], 1986, COMMUN PUR APPL MATH
[4]  
ATIYAH MF, 1982, PHIL T ROY SOC LON A, V0308, P00524
[5]   PARABOLIC BUNDLES, ELLIPTIC-SURFACES AND SU(2)-REPRESENTATION SPACES OF GENUS ZERO FUCHSIAN-GROUPS [J].
BAUER, S .
MATHEMATISCHE ANNALEN, 1991, 290 (03) :509-526
[6]   STABLE PARABOLIC BUNDLES AND FLAT SINGULAR CONNECTIONS [J].
BIQUARD, O .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1991, 119 (02) :231-257
[7]   REPRESENTATIONS OF ORBIFOLD GROUPS AND PARABOLIC BUNDLES [J].
BODEN, HU .
COMMENTARII MATHEMATICI HELVETICI, 1991, 66 (03) :389-447
[8]   VARIATIONS OF MODULI OF PARABOLIC BUNDLES [J].
BODEN, HU ;
HU, Y .
MATHEMATISCHE ANNALEN, 1995, 301 (03) :539-559
[9]  
CORLETTE K, 1988, J DIFFER GEOM, V28, P361
[10]   INFINITE DETERMINANTS, STABLE BUNDLES AND CURVATURE [J].
DONALDSON, SK .
DUKE MATHEMATICAL JOURNAL, 1987, 54 (01) :231-247