Sparse Hyperspectral Unmixing Based on Constrained lp - l2 Optimization

被引:59
作者
Chen, Fen [1 ]
Zhang, Yan [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Resources & Environm, Chengdu 611731, Peoples R China
[2] Sichuan Remote Sensing Geomat Inst, Chengdu 610100, Peoples R China
基金
美国国家科学基金会;
关键词
Abundance; endmember; hyperspectral; sparse regression; spectral unmixing; LEAST-SQUARES; ALGORITHM; SYSTEMS; SIGNALS;
D O I
10.1109/LGRS.2012.2232901
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Linear spectral unmixing is an effective technique to estimate the abundances of materials present in each hyper-spectral image pixel. Recently, sparse-regression-based unmixing approaches have been proposed to tackle this problem. Mostly, l(1) norm minimization is used to approximate the l(0) norm minimization problem in terms of computational complexity. In this letter, we model the hyperspectral unmixing as a constrained sparse l(p) - l(2)( 0 < p < 1) optimization problem and propose to solve it via the iteratively reweighted least squares algorithm. Experimental results on a series of simulated data sets and a real hyperspectral image demonstrate that the proposed method can achieve performance improvement over the state-of-the-art l(1) - l(2) method.
引用
收藏
页码:1142 / 1146
页数:5
相关论文
共 20 条
[1]   Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Dobigeon, Nicolas ;
Parente, Mario ;
Du, Qian ;
Gader, Paul ;
Chanussot, Jocelyn .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (02) :354-379
[2]   On the Uniqueness of Nonnegative Sparse Solutions to Underdetermined Systems of Equations [J].
Bruckstein, Alfred M. ;
Elad, Michael ;
Zibulevsky, Michael .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (11) :4813-4820
[3]   From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images [J].
Bruckstein, Alfred M. ;
Donoho, David L. ;
Elad, Michael .
SIAM REVIEW, 2009, 51 (01) :34-81
[4]   Enhancing Sparsity by Reweighted l1 Minimization [J].
Candes, Emmanuel J. ;
Wakin, Michael B. ;
Boyd, Stephen P. .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2008, 14 (5-6) :877-905
[5]   Iteratively reweighted algorithms for compressive sensing [J].
Chartrand, Rick ;
Yin, Wotao .
2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, :3869-+
[6]   Exact reconstruction of sparse signals via nonconvex minimization [J].
Chartrand, Rick .
IEEE SIGNAL PROCESSING LETTERS, 2007, 14 (10) :707-710
[7]   MINIMUM-VOLUME TRANSFORMS FOR REMOTELY-SENSED DATA [J].
CRAIG, MD .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1994, 32 (03) :542-552
[8]   Iteratively Reweighted Least Squares Minimization for Sparse Recovery [J].
Daubechies, Ingrid ;
Devore, Ronald ;
Fornasier, Massimo ;
Guentuerk, C. Sinan .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2010, 63 (01) :1-38
[9]  
Elad M, 2010, SPARSE AND REDUNDANT REPRESENTATIONS, P3, DOI 10.1007/978-1-4419-7011-4_1
[10]  
Golub G. H., 1996, MATRIX COMPUTATIONS