Identification and characterization of novel and conserved microRNAs in radish (Raphanus sativus L.) using high-throughput sequencing

被引:32
|
作者
Xu, Liang [1 ]
Wang, Yan [1 ]
Xu, Yuanyuan [1 ]
Wang, Liangju [1 ]
Zhai, Lulu [1 ]
Zhu, Xianwen [2 ]
Gong, Yiqin [1 ]
Ye, Shan [1 ]
Liu, Liwang [1 ]
机构
[1] Nanjing Agr Univ, Natl Key Lab Crop Genet & Germplasm Enhancement, Key Lab Hort Crop Biol & Genet Improvement E Chin, Minist Agr,Coll Hort, Nanjing 210095, Jiangsu, Peoples R China
[2] N Dakota State Univ, Dept Plant Sci, Fargo, ND 58108 USA
基金
国家科技攻关计划; 中国国家自然科学基金;
关键词
Radish (Raphanus sativus L.); High-throughput sequencing; MicroRNAs; qRT-PCR; Target gene; WIDE IDENTIFICATION; TARGETS; MIRNAS; ANNOTATION; BIOGENESIS; EXPRESSION; DISCOVERY; RNAS; PATTERNS; GENOMICS;
D O I
10.1016/j.plantsci.2012.11.010
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
MicroRNAs (miRNAs) are endogenous, non-coding, small RNAs that play significant regulatory roles in plant growth, development, and biotic and abiotic stress responses. To date, a great number of conserved and species-specific miRNAs have been identified in many important plant species such as Arabidopsis, rice and poplar. However, little is known about identification of miRNAs and their target genes in radish (Raphanus sativus L). In the present study, a small RNA library from radish root was constructed and sequenced using the high-throughput Solexa sequencing. Through sequence alignment and secondary structure prediction, a total of 545 conserved miRNA families as well as 15 novel (with their miRNA* strand) and 64 potentially novel miRNAs were identified. Quantitative real-time PCR (qRT-PCR) analysis confirmed that both conserved and novel miRNAs were expressed in radish, and some of them were preferentially expressed in certain tissues. A total of 196 potential target genes were predicted for 42 novel radish miRNAs. Gene ontology (GO) analysis showed that most of the targets were involved in plant growth, development, metabolism and stress responses. This study represents a first large-scale identification and characterization of radish miRNAs and their potential target genes. These results could lead to the further identification of radish miRNAs and enhance our understanding of radish miRNA regulatory mechanisms in diverse biological and metabolic processes. (C) 2012 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:108 / 114
页数:7
相关论文
共 50 条
  • [11] Identification of Known and Novel Arundo donax L. MicroRNAs and Their Targets Using High-Throughput Sequencing and Degradome Analysis
    Rotunno, Silvia
    Cocozza, Claudia
    Pantaleo, Vitantonio
    Leonetti, Paola
    Bertoldi, Loris
    Valle, Giorgio
    Accotto, Gian Paolo
    Loreto, Francesco
    Scippa, Gabriella Stefania
    Miozzi, Laura
    LIFE-BASEL, 2022, 12 (05):
  • [12] Identification of novel and conserved microRNAs in Panax notoginseng roots by high-throughput sequencing
    Rongchang Wei
    Deyou Qiu
    Iain W. Wilson
    Huan Zhao
    Shanfa Lu
    Jianhua Miao
    Shixin Feng
    Longhua Bai
    Qinghua Wu
    Dongping Tu
    Xiaojun Ma
    Qi Tang
    BMC Genomics, 16
  • [13] Identification and profiling of conserved microRNAs in different developmental stages of crown imperial (Fritillaria imperialis L.) using high-throughput sequencing
    Ahmadi-Teshniz, Fereshteh
    Shiran, Behrouz
    Mousavi-Fard, Sadegh
    Fallahi, Hossein
    Deri, Bojana Banovic
    MOLECULAR BIOLOGY REPORTS, 2022, 49 (02) : 1121 - 1132
  • [14] Identification and characterization of microRNAs in Phaseolus vulgaris by high-throughput sequencing
    Pelaez, Pablo
    Trejo, Minerva S.
    Iniguez, Luis P.
    Estrada-Navarrete, Georgina
    Covarrubias, Alejandra A.
    Reyes, Jose L.
    Sanchez, Federico
    BMC GENOMICS, 2012, 13
  • [15] Identification and characterization of microRNAs in the gonads of Crassostrea hongkongensis using high-throughput sequencing
    Wei, Pinyuan
    He, Pingping
    Zhang, Xingzhi
    Li, Wei
    Zhang, Li
    Guan, Junliang
    Chen, Xiaohan
    Lin, Yong
    Zhuo, Xiaofei
    Li, Qiongzhen
    Peng, Jinxia
    COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS, 2019, 31
  • [16] Genome-wide identification of microRNAs associated with taproot development in radish (Raphanus sativus L.)
    Sun, Yuyan
    Qiu, Yang
    Zhang, Xiaohui
    Chen, Xiaohua
    Shen, Di
    Wang, Haiping
    Li, Xixiang
    GENE, 2015, 569 (01) : 118 - 126
  • [17] Identification of Known and Novel MicroRNAs in Raspberry Organs Through High-Throughput Sequencing
    Yan, Gengxuan
    Zhang, Jie
    Jiang, Meng
    Gao, Xince
    Yang, Hongyi
    Li, Lili
    FRONTIERS IN PLANT SCIENCE, 2020, 11
  • [18] Identification of Radish (Raphanus sativus L.) miRNAs and Their Target Genes to Explore miRNA-Mediated Regulatory Networks in Lead (Pb) Stress Responses by High-Throughput Sequencing and Degradome Analysis
    Wang, Yan
    Liu, Wei
    Shen, Hong
    Zhu, Xianwen
    Zhai, Lulu
    Xu, Liang
    Wang, Ronghua
    Gong, Yiqin
    Limera, Cecilia
    Liu, Liwang
    PLANT MOLECULAR BIOLOGY REPORTER, 2015, 33 (03) : 358 - 376
  • [19] Identification and Characterization of Known and Novel MicroRNAs in Five Tissues of Wax Gourd (Benincasa hispida) Based on High-Throughput Sequencing
    Yan, Jinqiang
    Wang, Min
    Liu, Wenrui
    Xie, Dasen
    He, Xiaoming
    Peng, Qingwu
    Jiang, Biao
    APPLIED SCIENCES-BASEL, 2021, 11 (21):
  • [20] Genome-wide identification and characterization of cadmium-responsive microRNAs and their target genes in radish (Raphanus sativus L.) roots
    Xu, Liang
    Wang, Yan
    Zhai, Lulu
    Xu, Yuanyuan
    Wang, Liangju
    Zhu, Xianwen
    Gong, Yiqin
    Yu, Rugang
    Limera, Cecilia
    Liu, Liwang
    JOURNAL OF EXPERIMENTAL BOTANY, 2013, 64 (14) : 4271 - 4287